
•              is a vertex, called the source;     
•  G=(V,E) is an acyclic directed graph;

The Multicast Problem: definition

s � V

•                                        is a set of target vertices.T = {t1, . . . , tk} � V

Examples:
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Definition
A multicast problem is a triple (G, s,T ) such that:
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 for each vertex         , there exist r edge-disjoint paths 
 from s to t. 

Let r be an integer. A multicast problem (G, s,T ) is solvable at 
rate r using coding if and only if the following condition holds:

t � T(★)

The Main Theorem of Network Coding
Theorem:
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(this gives a solution over any alphabet GF(q))


