

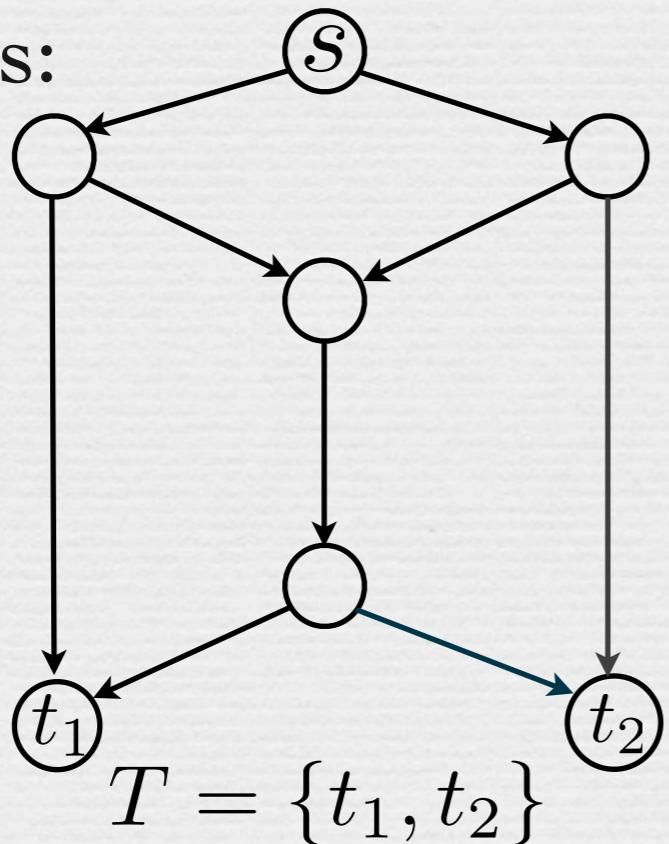
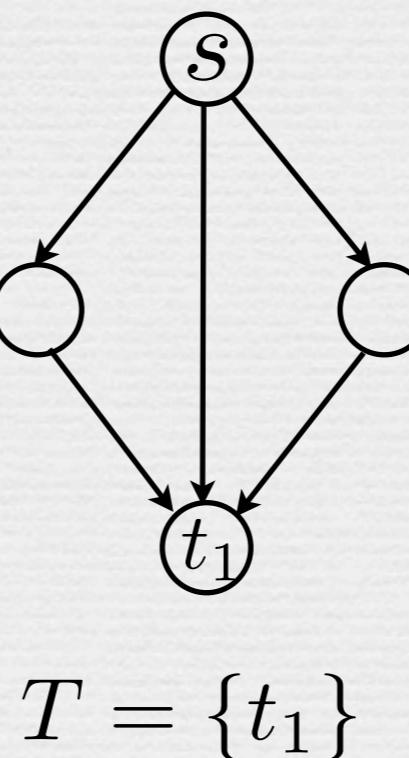
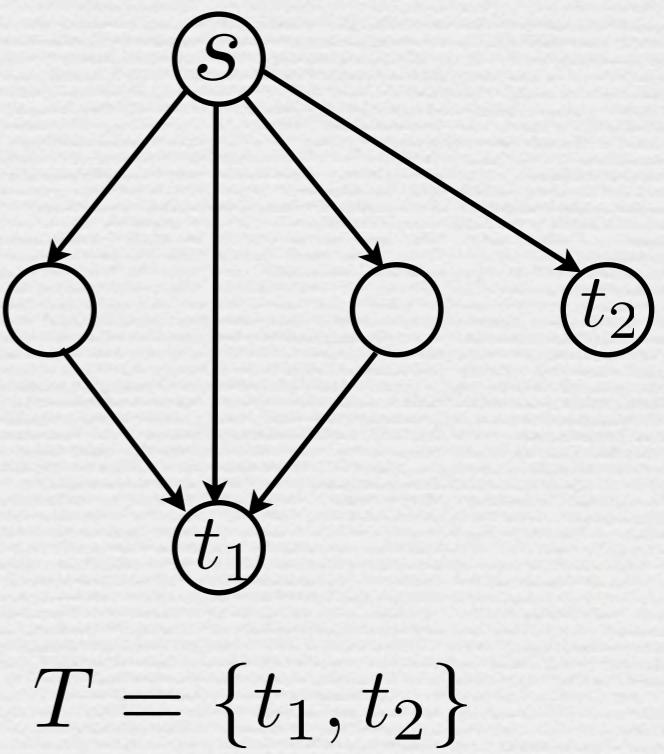
The Multicast Problem: definition

Definition

A multicast problem is a triple (G, s, T) such that:

- $G = (V, E)$ is an acyclic directed graph;
- $s \in V$ is a vertex, called the *source*;
- $T = \{t_1, \dots, t_k\} \subseteq V$ is a set of *target* vertices.

Examples:



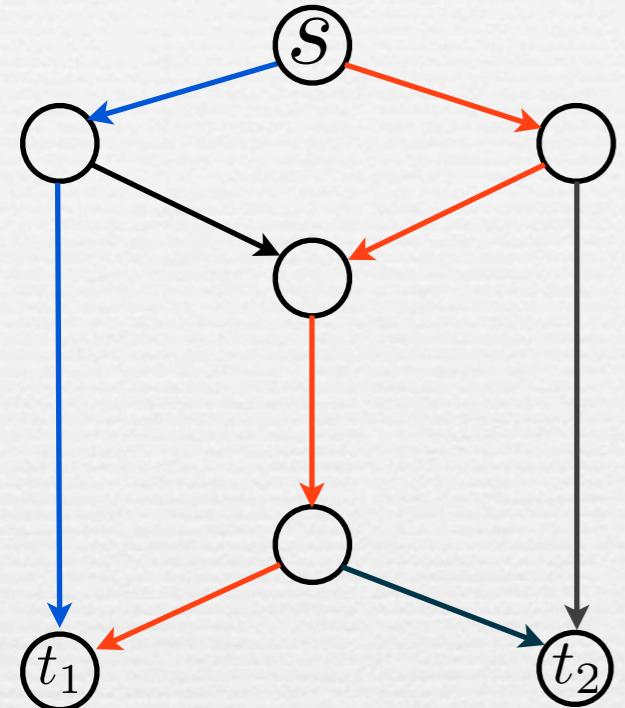
The Main Theorem of Network Coding

Theorem:

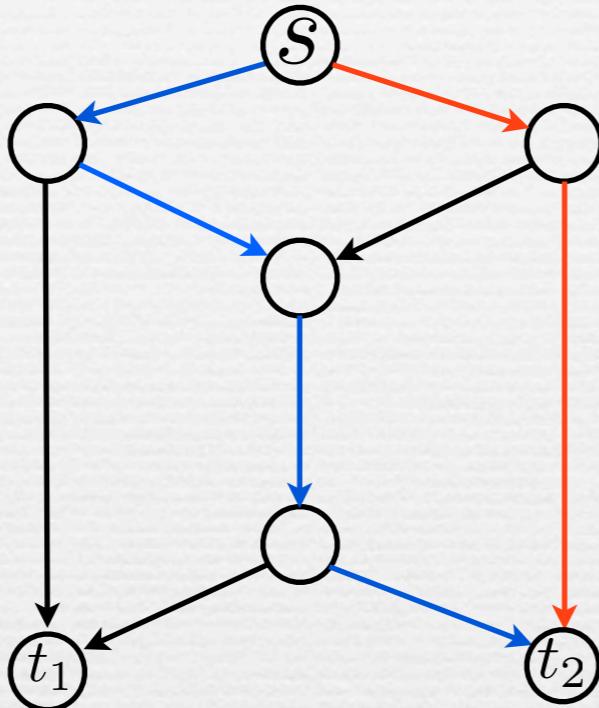
Let r be an integer. A multicast problem (G, s, T) is solvable at rate r **using coding** if and only if the following condition holds:

- (★) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .

Example 1:

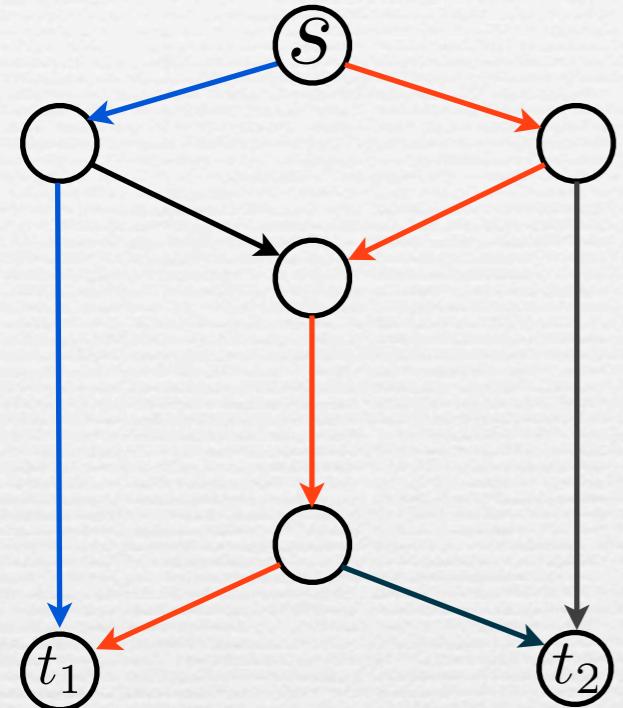


2 edge-disjoint paths
from s to t_1

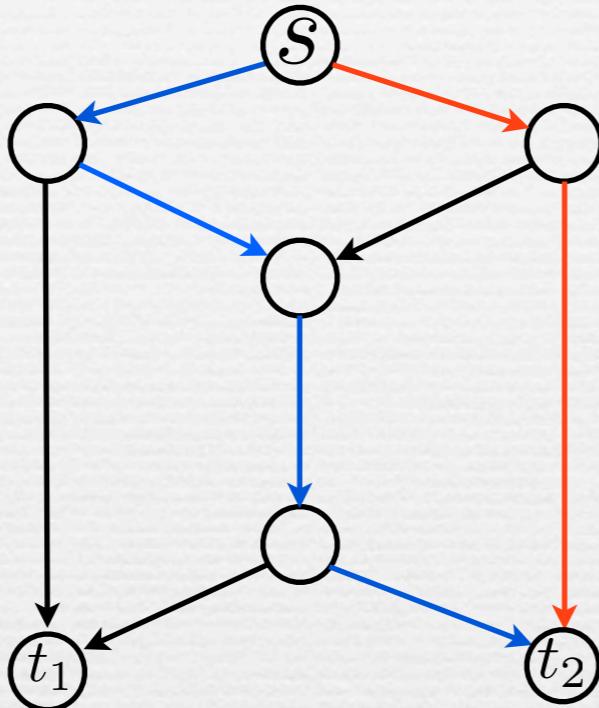


2 edge-disjoint paths
from s to t_2

Example 1: condition(\star) holds for $r = 2$

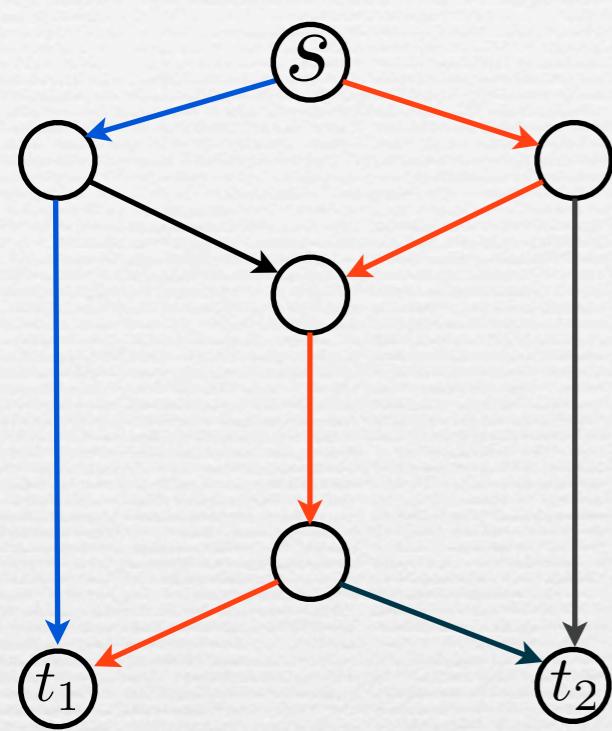


2 edge-disjoint paths
from s to t_1

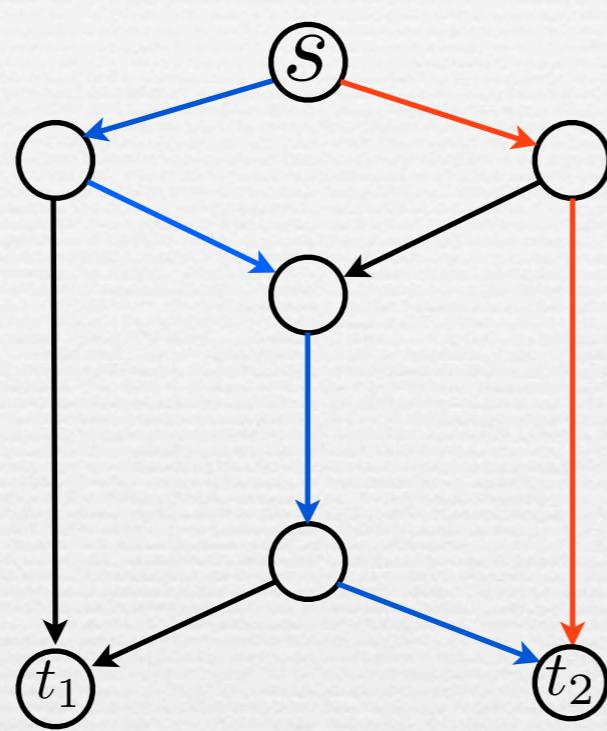


2 edge-disjoint paths
from s to t_2

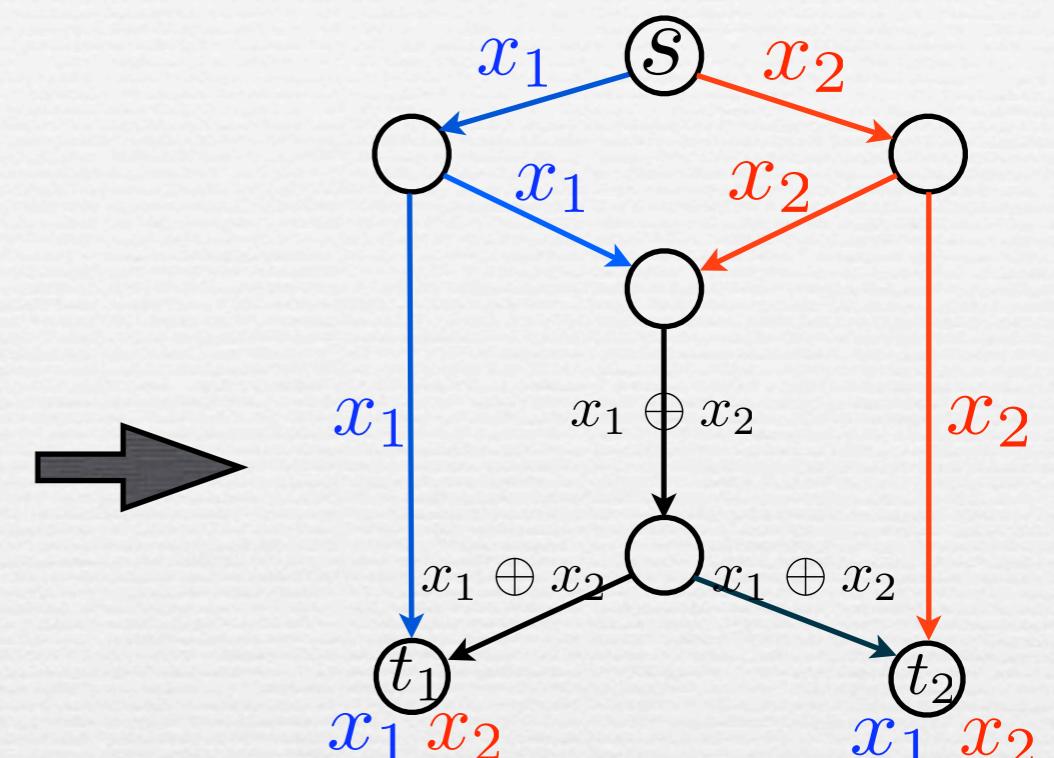
Example 1: condition \star holds for $r = 2$



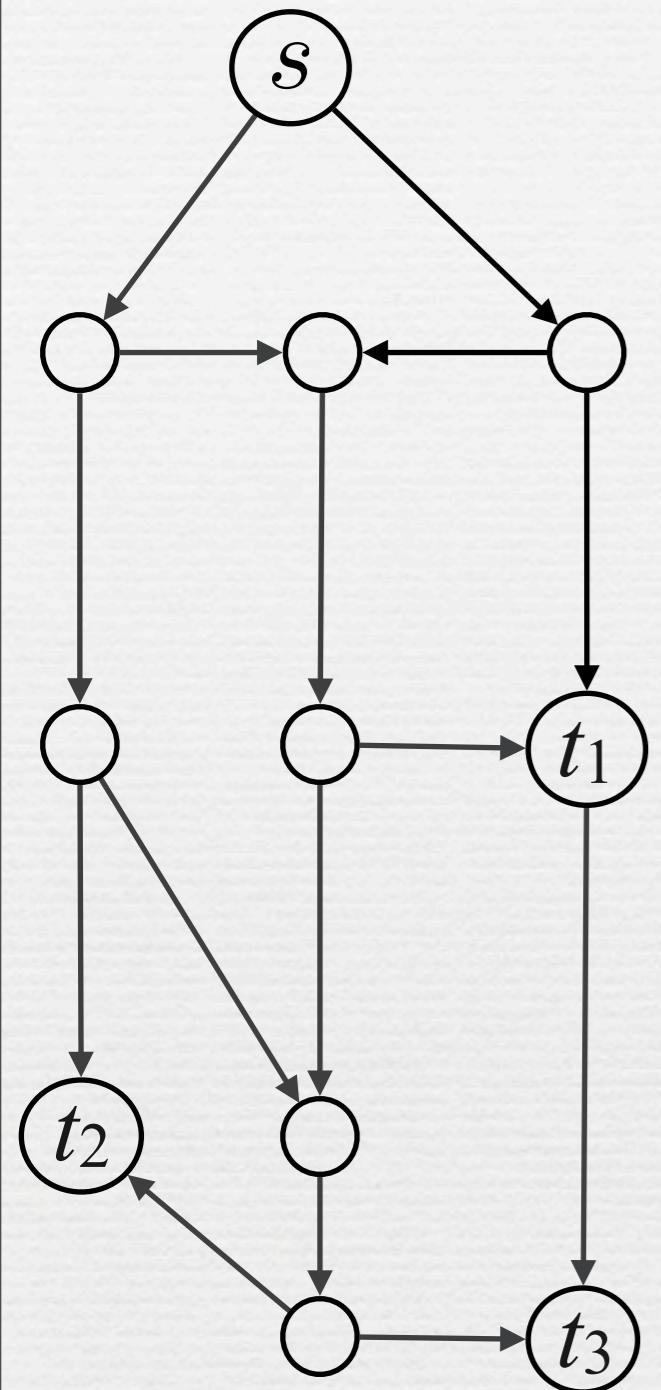
2 edge-disjoint paths
from s to t_1



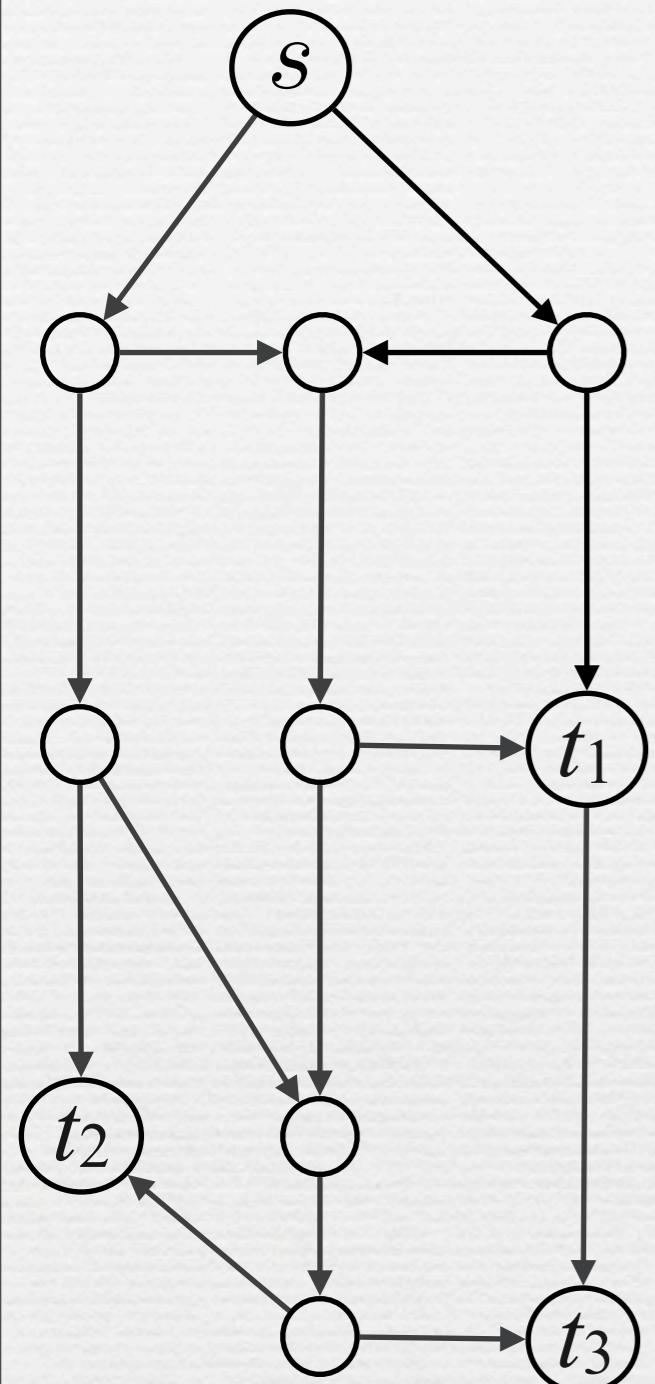
2 edge-disjoint paths
from s to t_2



solvable at rate 2
(with the alphabet GF(2))



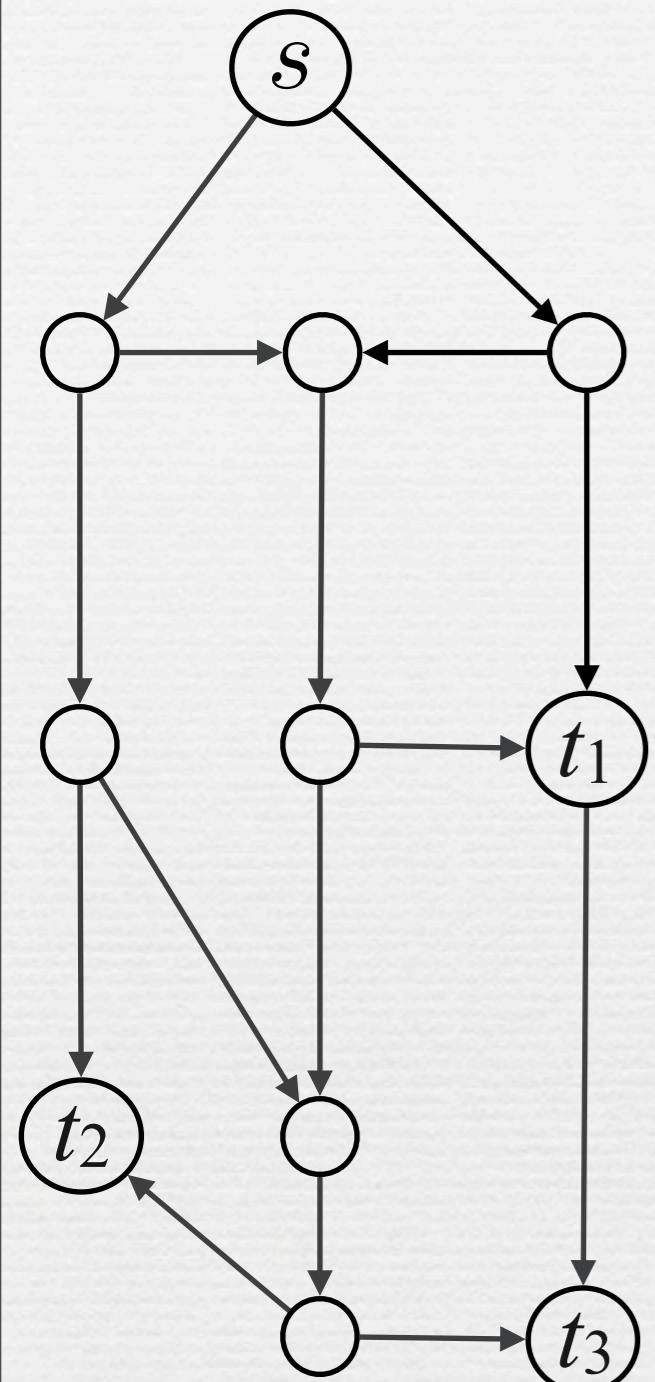
Example 2



condition (★) holds for $r = ?$

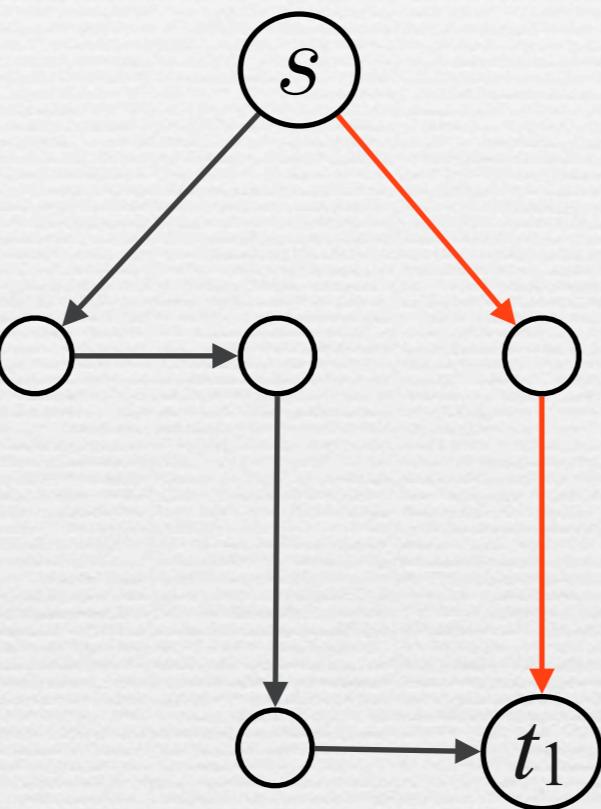
Example 2

(★) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .

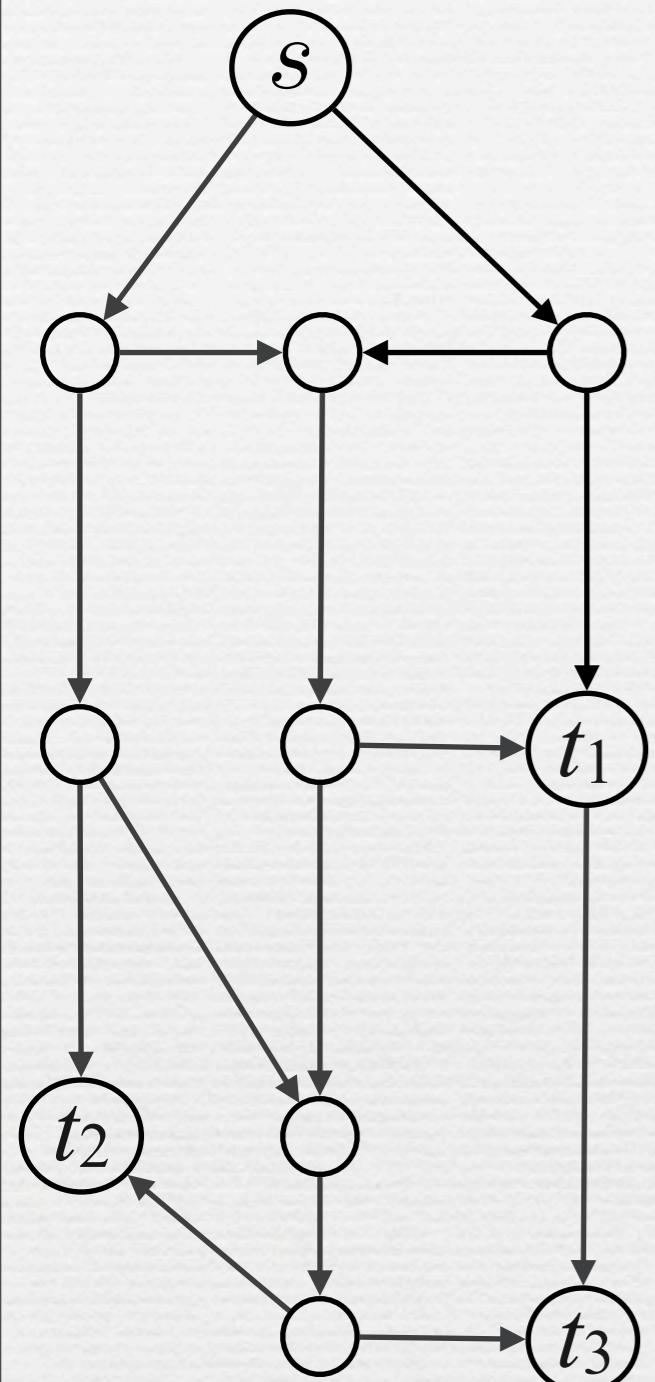


Example 2

condition (\star) holds for $r = ?$

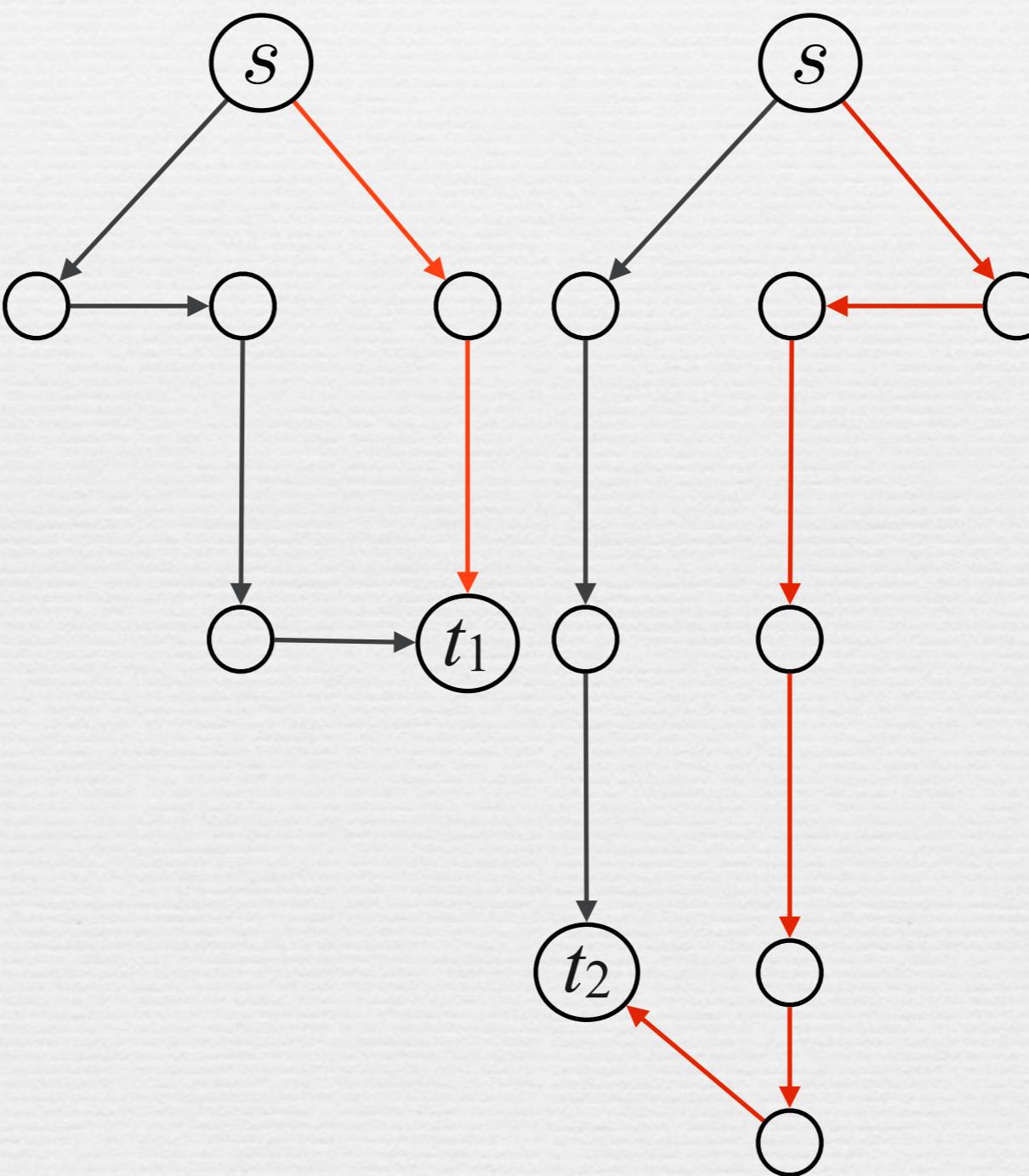


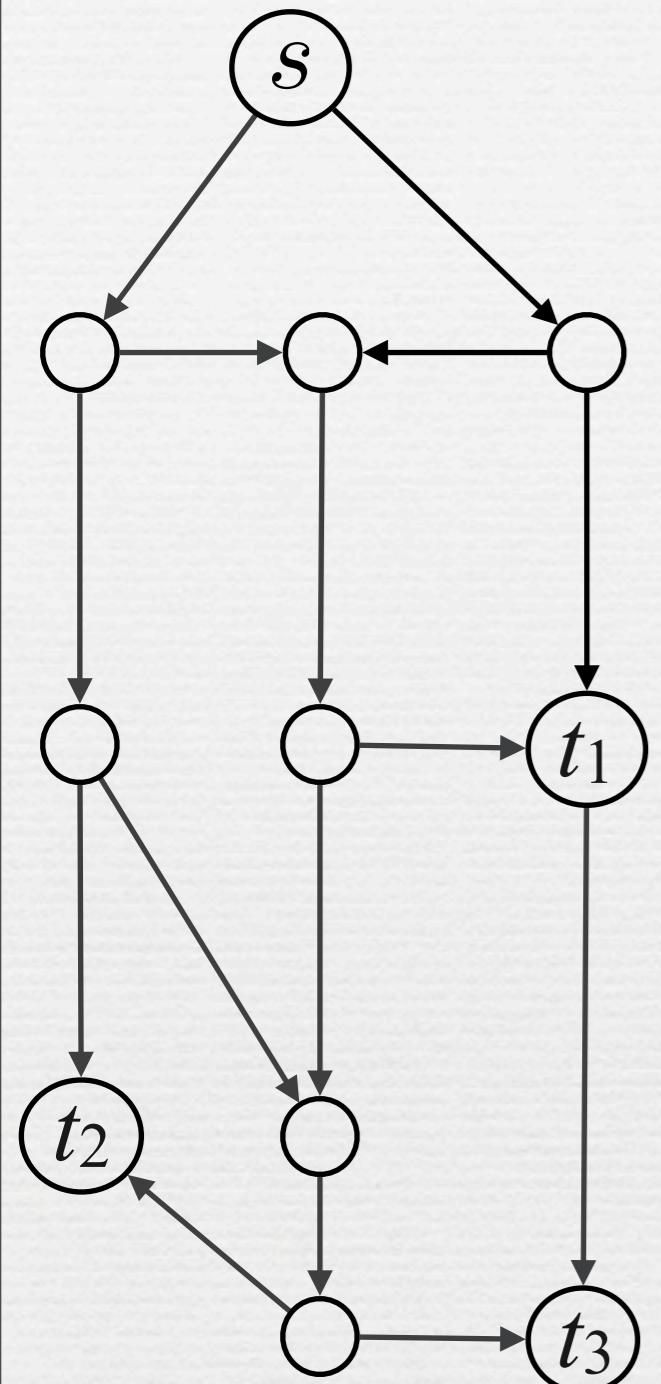
- (\star) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .



Example 2

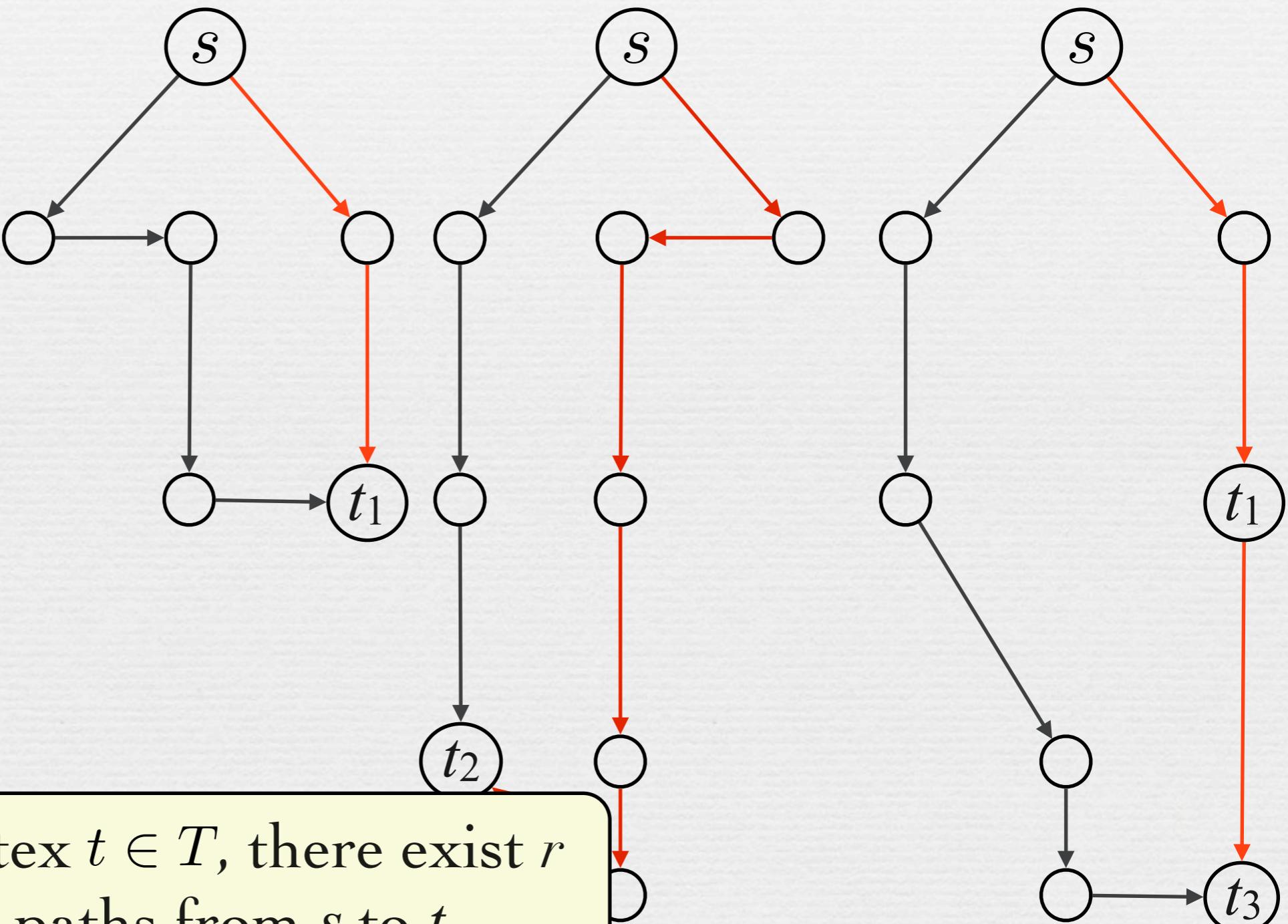
condition (\star) holds for $r = ?$



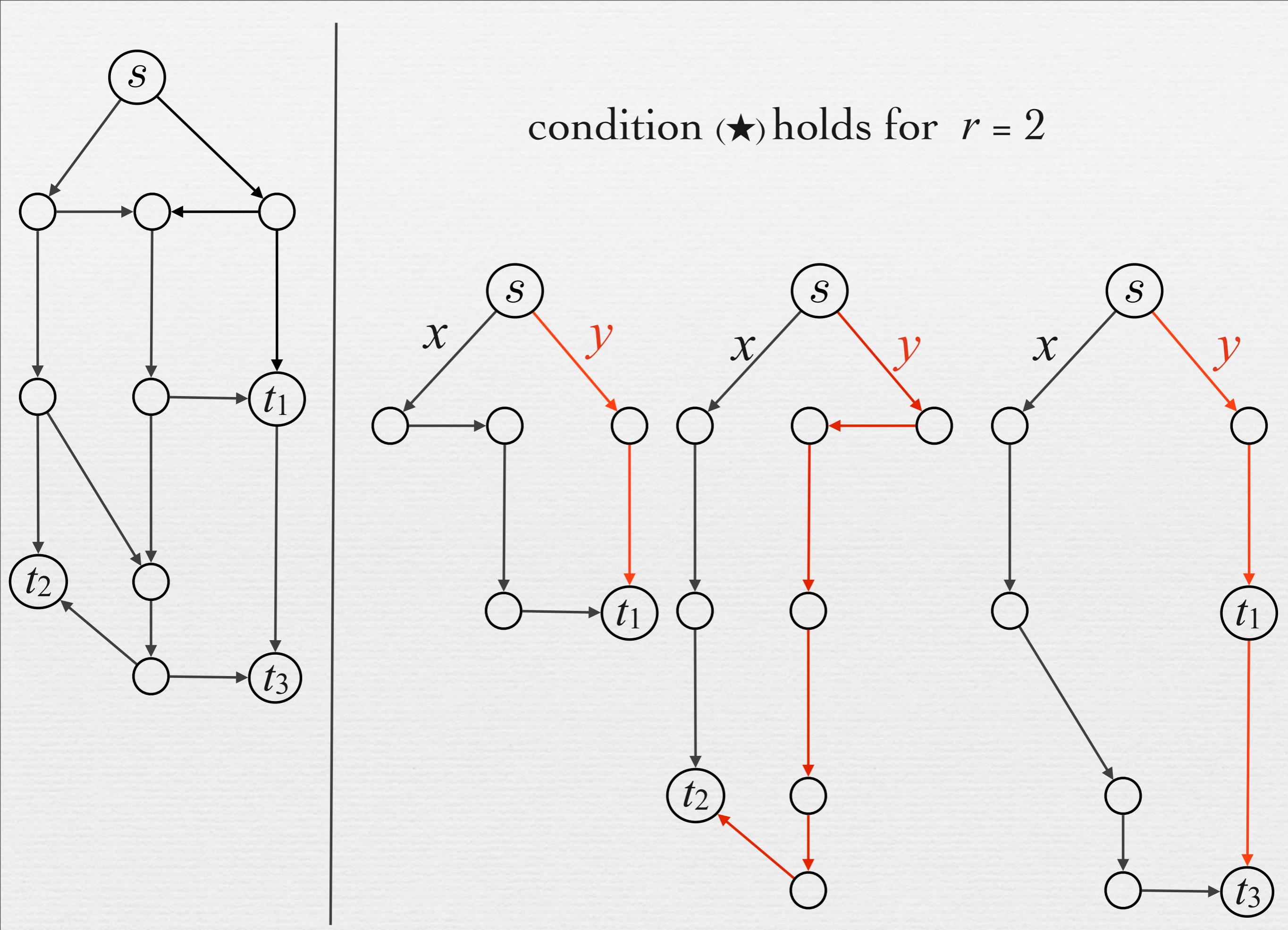


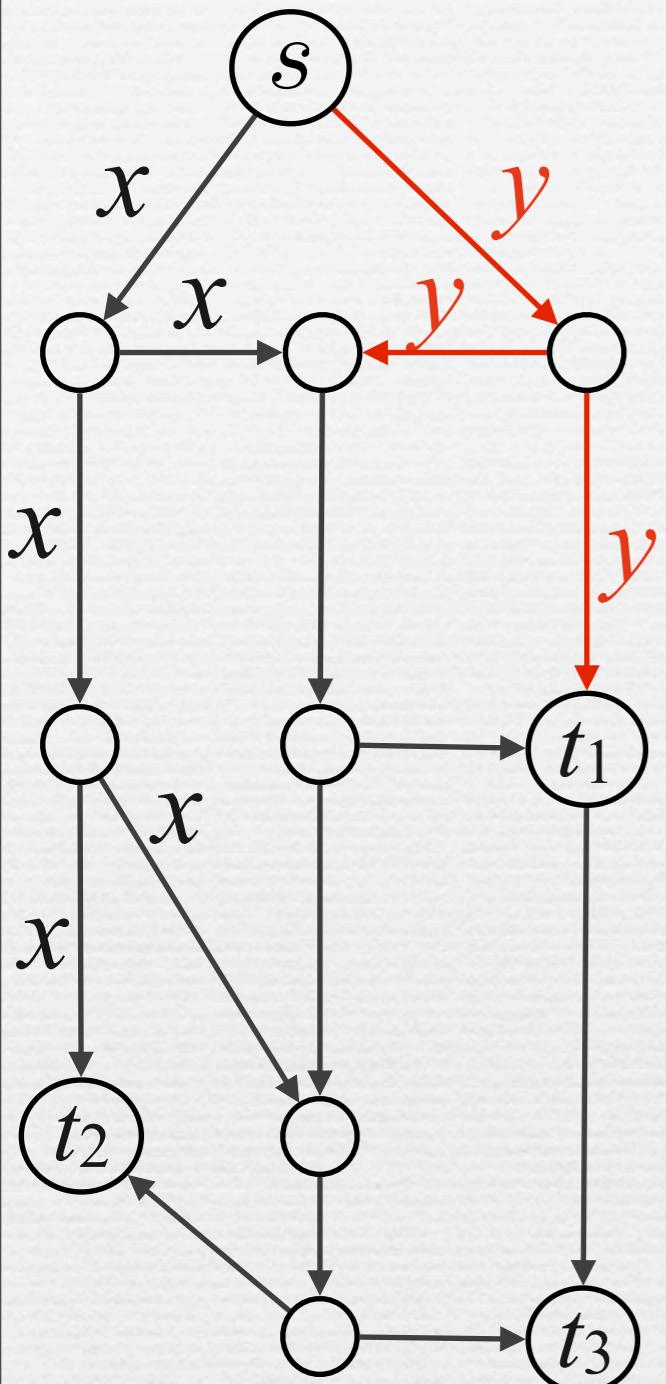
Example 2

condition (\star) holds for $r = 2$

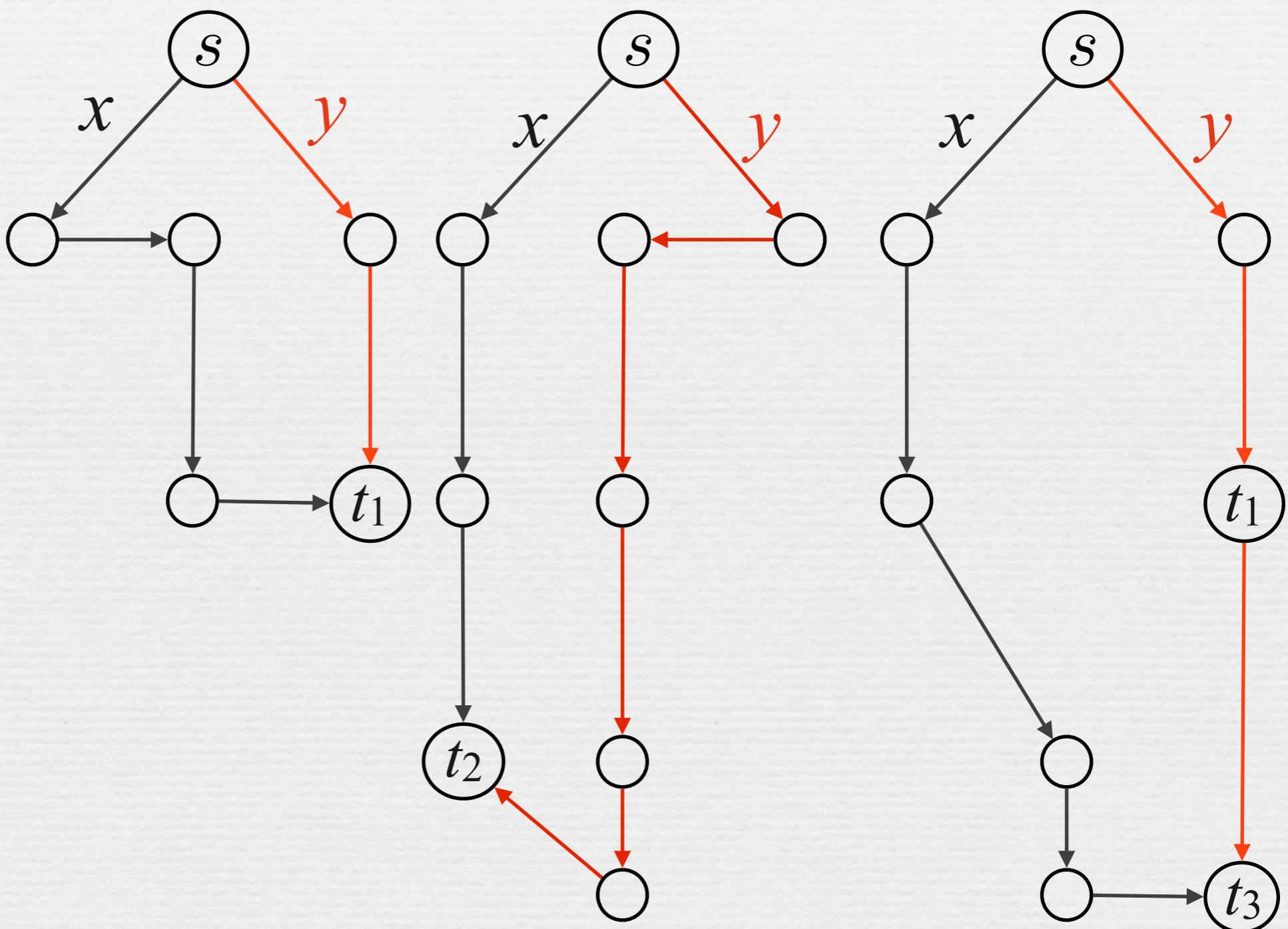


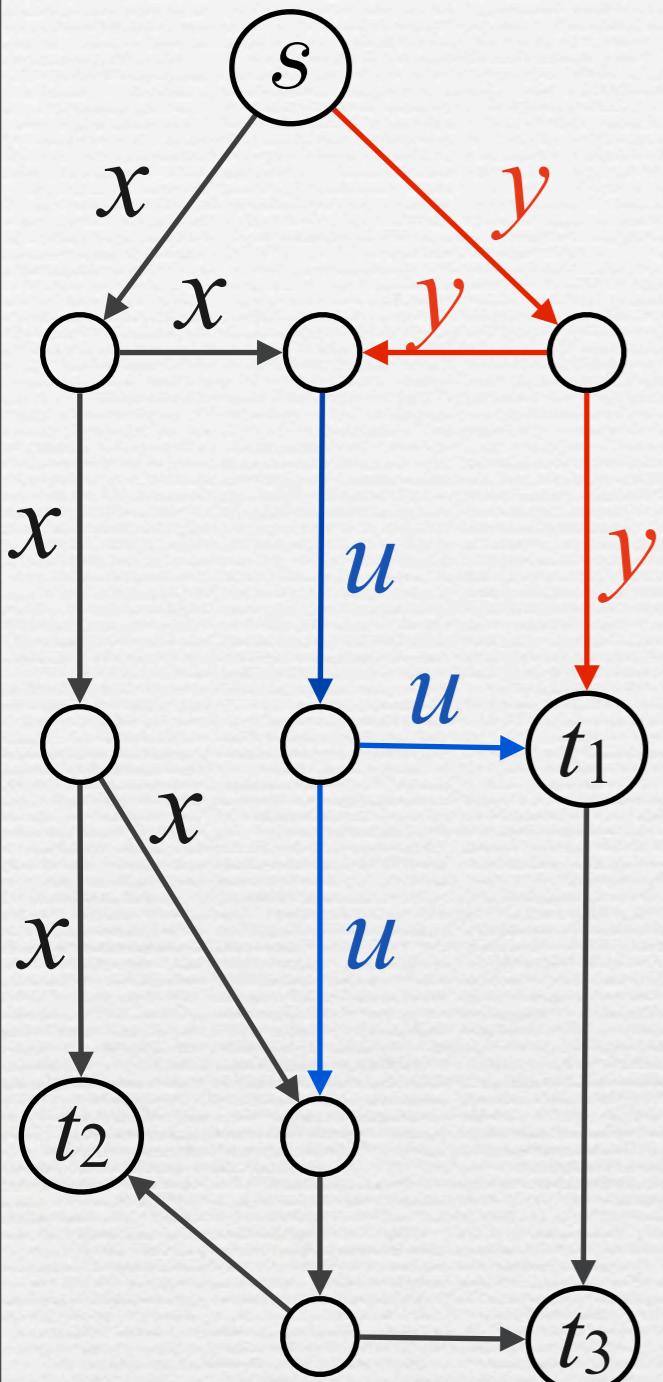
(\star) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .





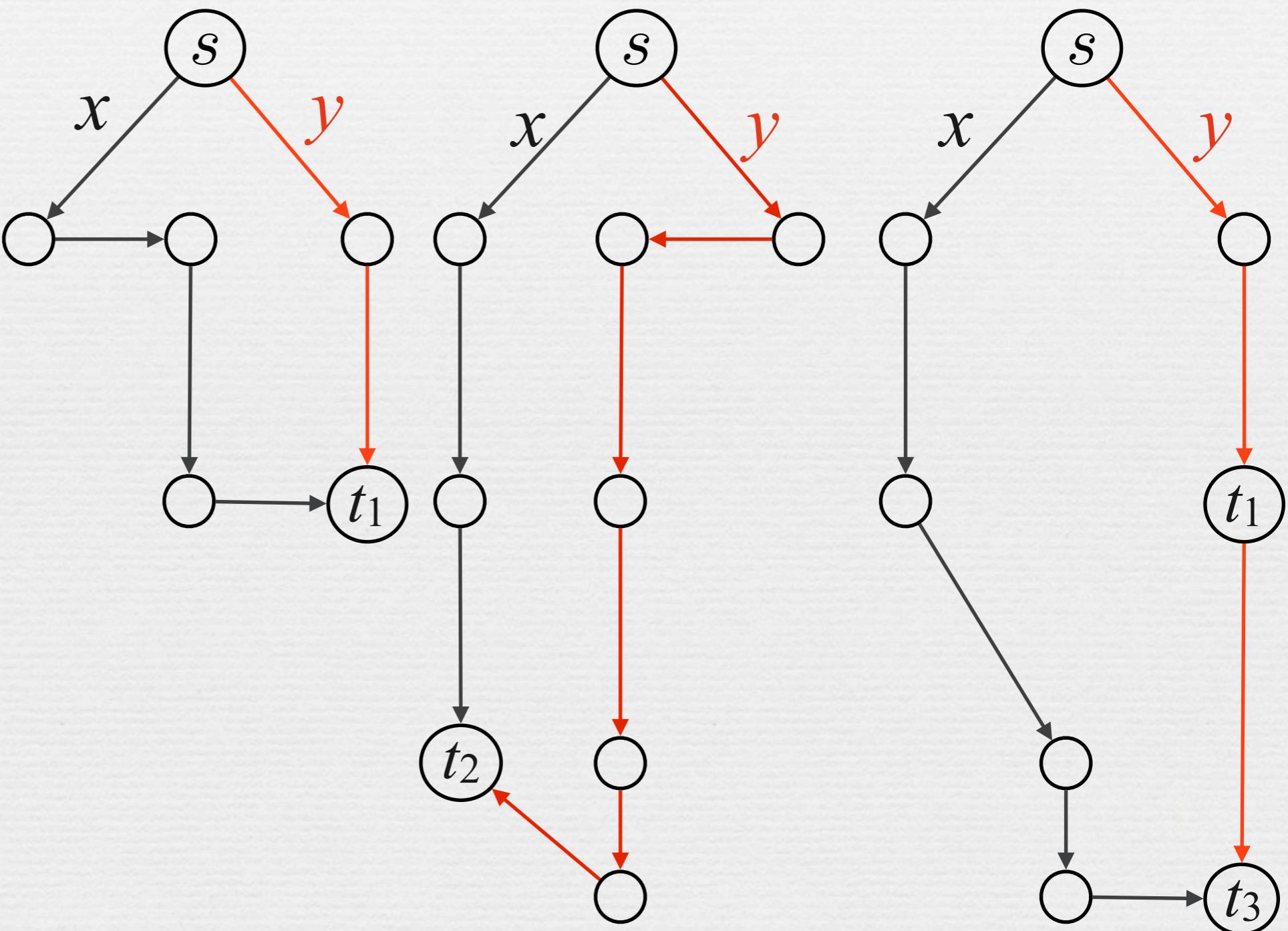
condition (\star) holds for $r = 2$

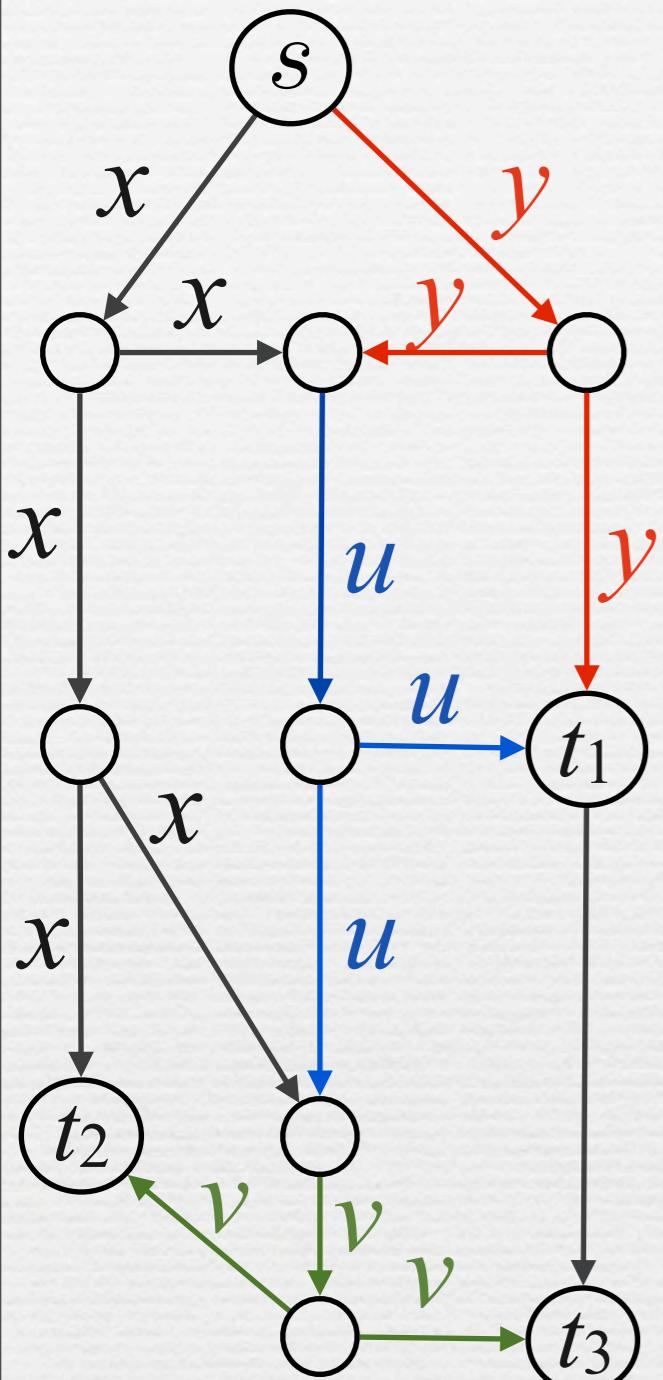




$$u = ax + by$$

condition (\star) holds for $r = 2$

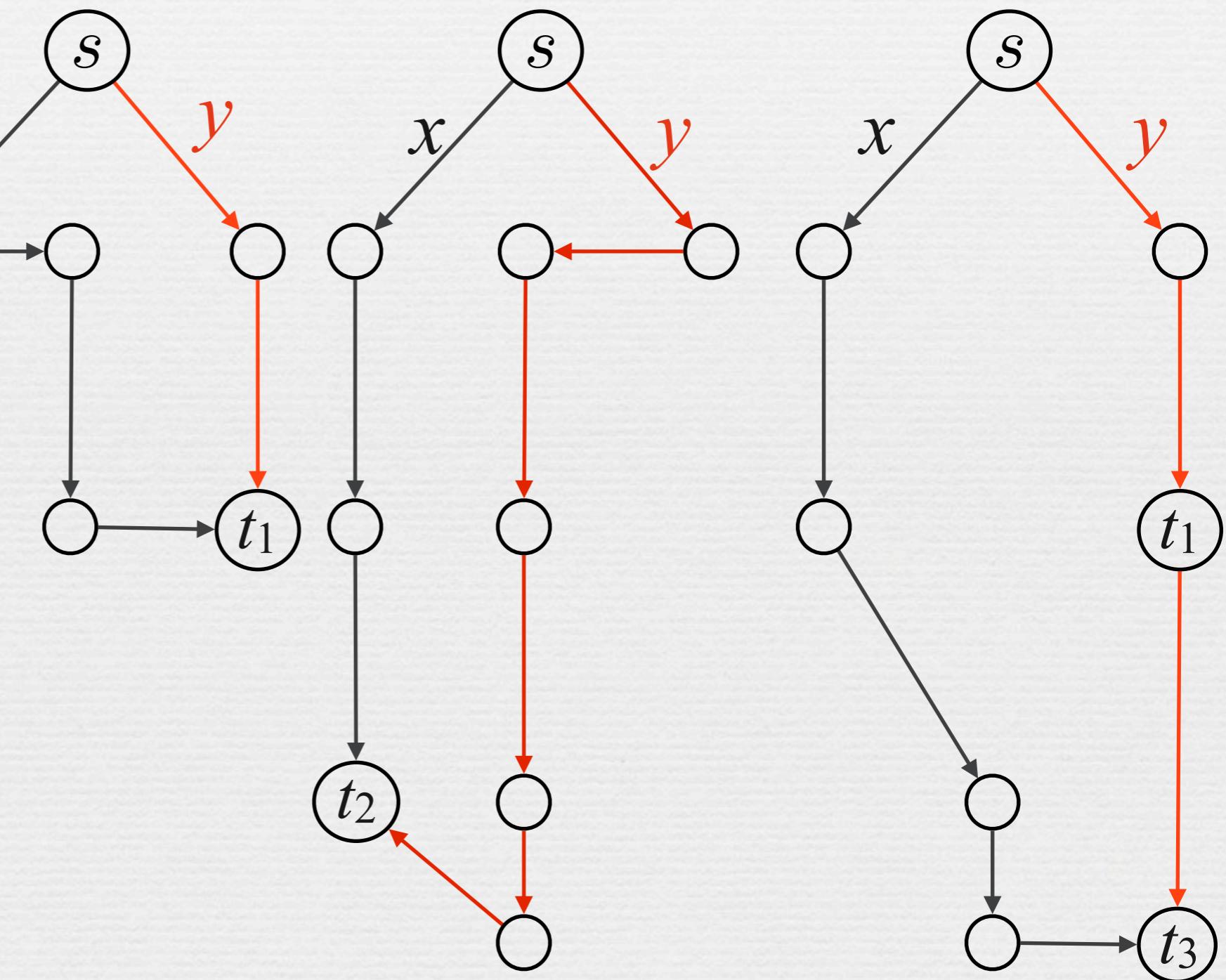


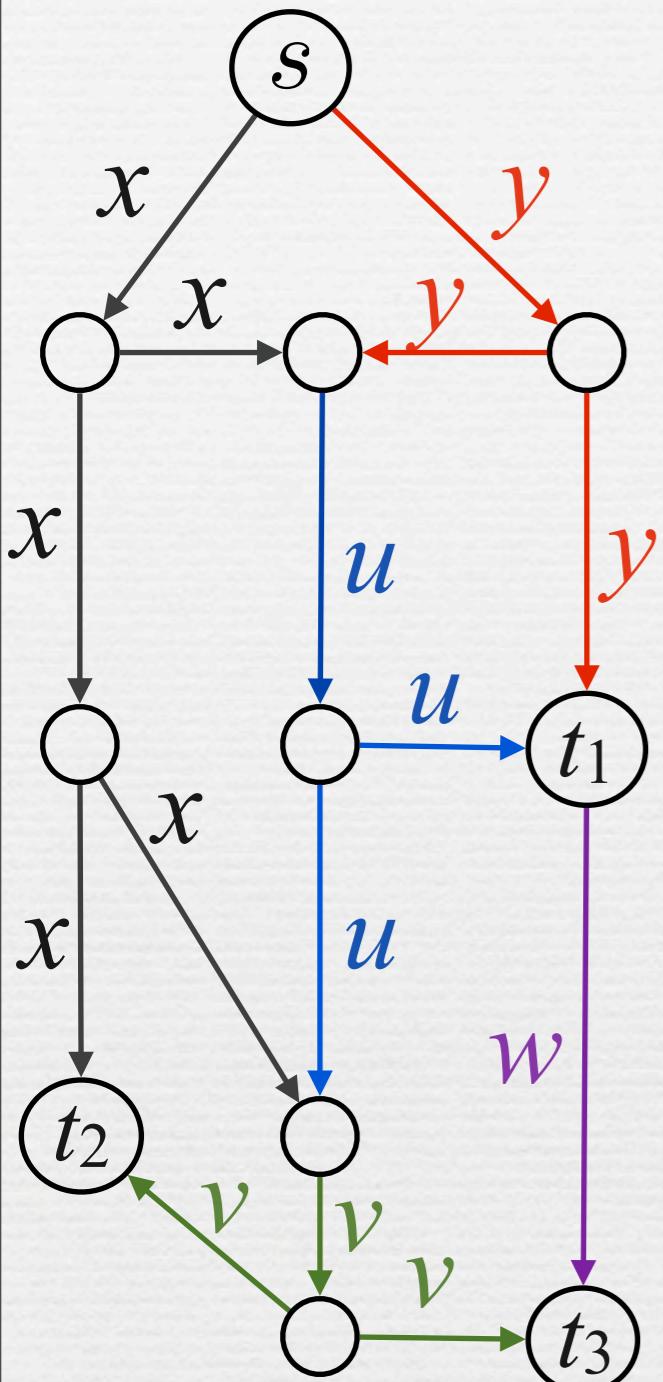


$$u = ax + by$$

$$v = cx + du$$

condition (\star) holds for $r = 2$



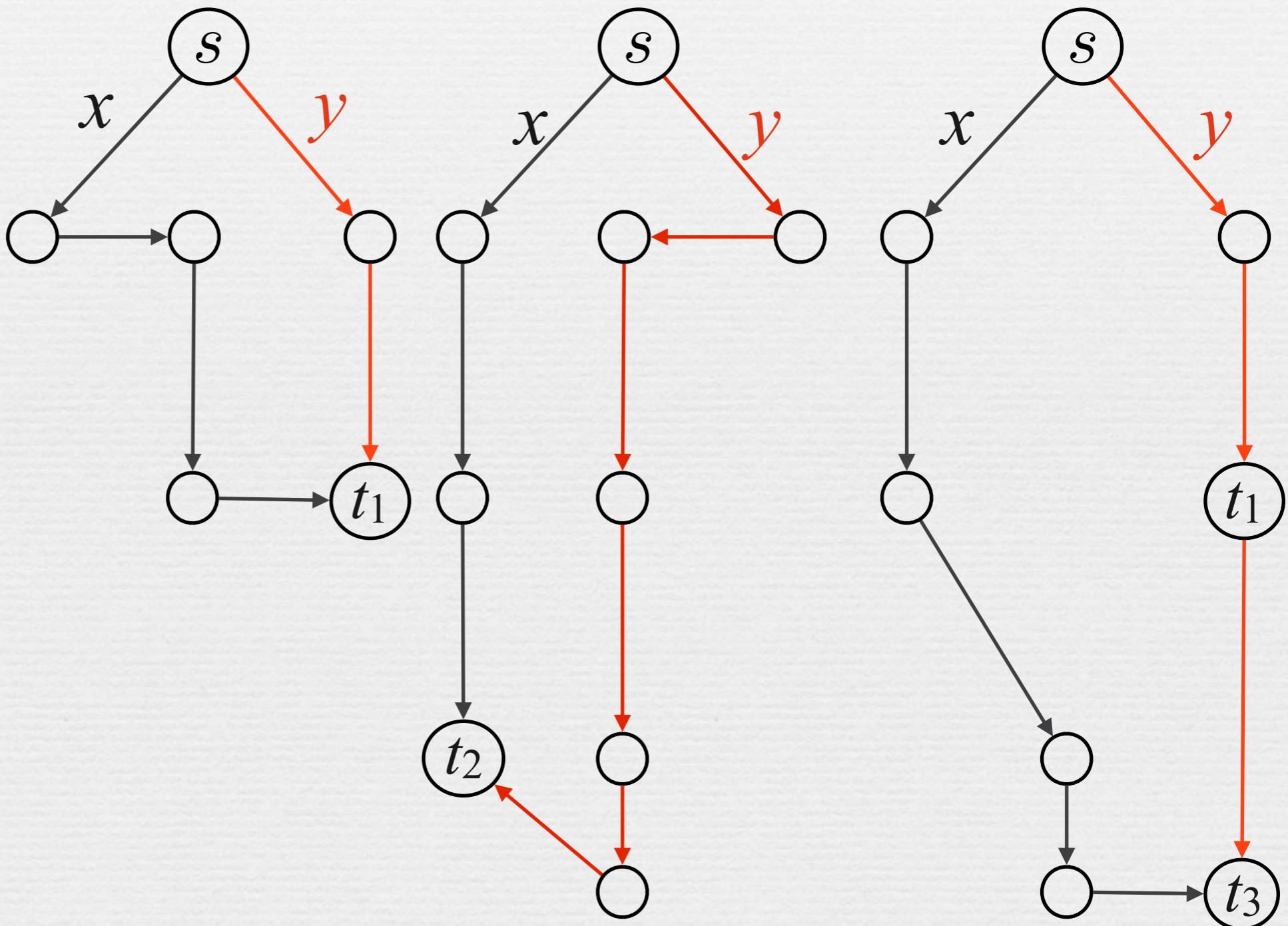


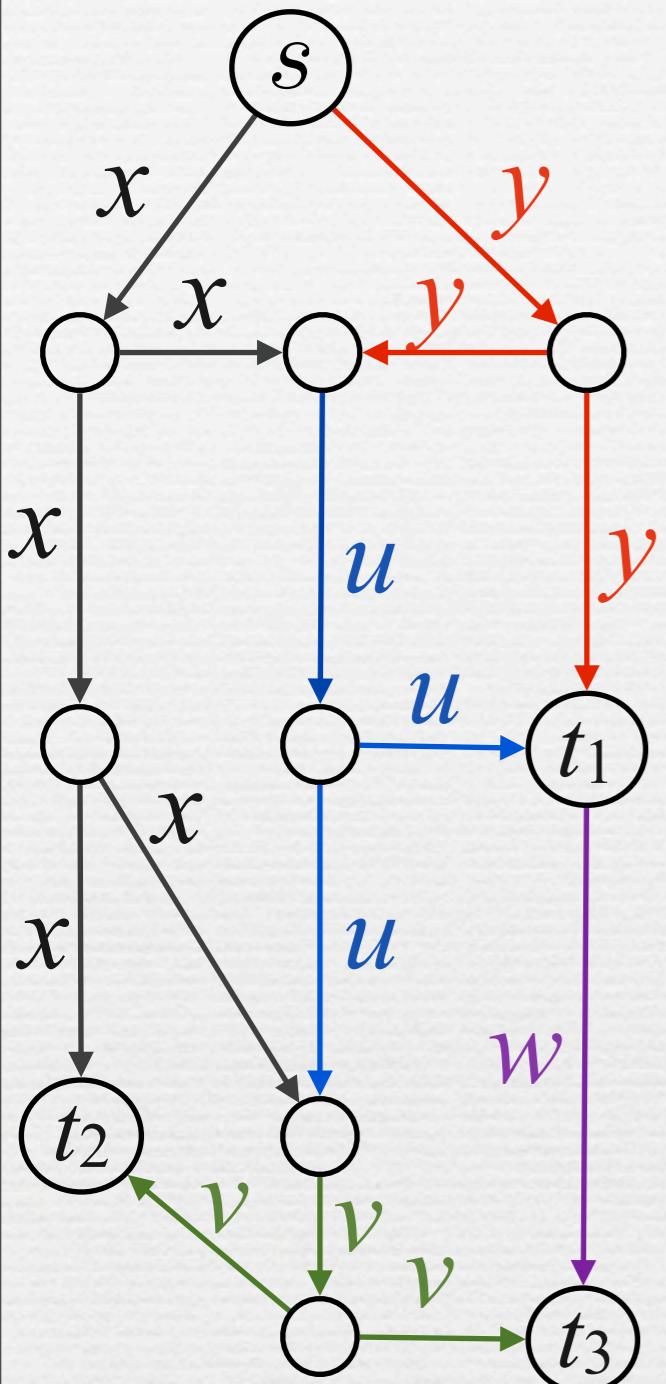
$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

condition (\star) holds for $r = 2$





$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

at t_1 :

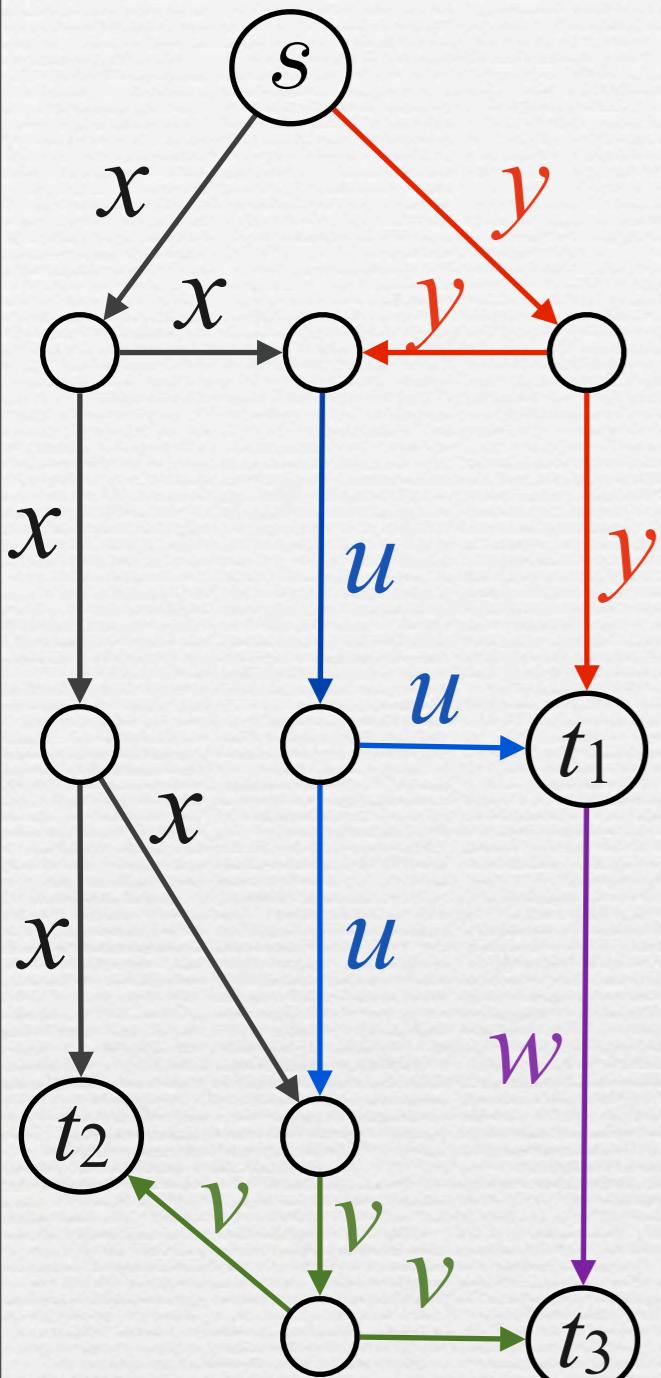
$$\begin{pmatrix} u \\ y \end{pmatrix} = \begin{bmatrix} A_1 \\ \hline a & b \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_2 :

$$\begin{pmatrix} x \\ v \end{pmatrix} = \begin{bmatrix} A_2 \\ \hline 1 & 0 \\ c + ad & bd \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_3 :

$$\begin{pmatrix} v \\ w \end{pmatrix} = \begin{bmatrix} A_3 \\ \hline c + ad & bd \\ ae & be + f \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$



$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

at t_1 :

$$\begin{pmatrix} u \\ y \end{pmatrix} = \begin{bmatrix} A_1 \\ \hline a & b \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

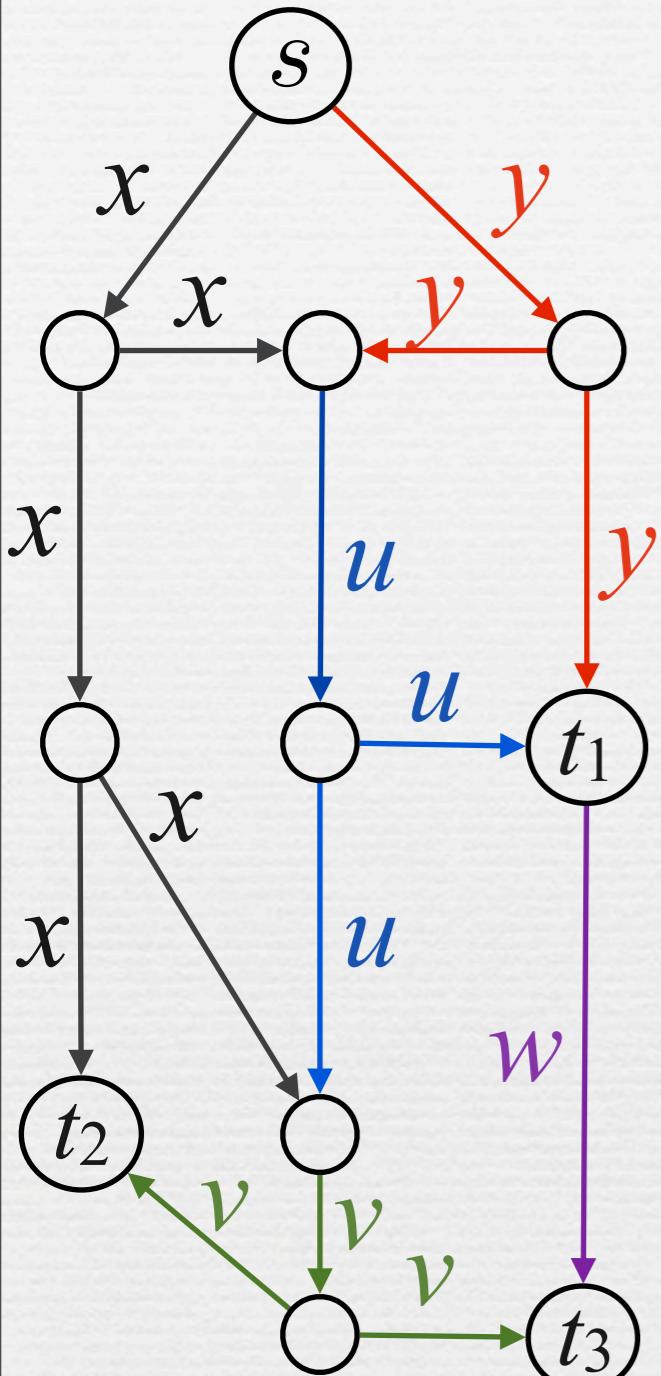
at t_2 :

$$\begin{pmatrix} x \\ v \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ c + ad & bd \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_3 :

$$\begin{pmatrix} v \\ w \end{pmatrix} = \begin{bmatrix} c + ad & bd \\ ae & be + f \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

choose a, b, c, d, e and f such that the three matrices are invertible



$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

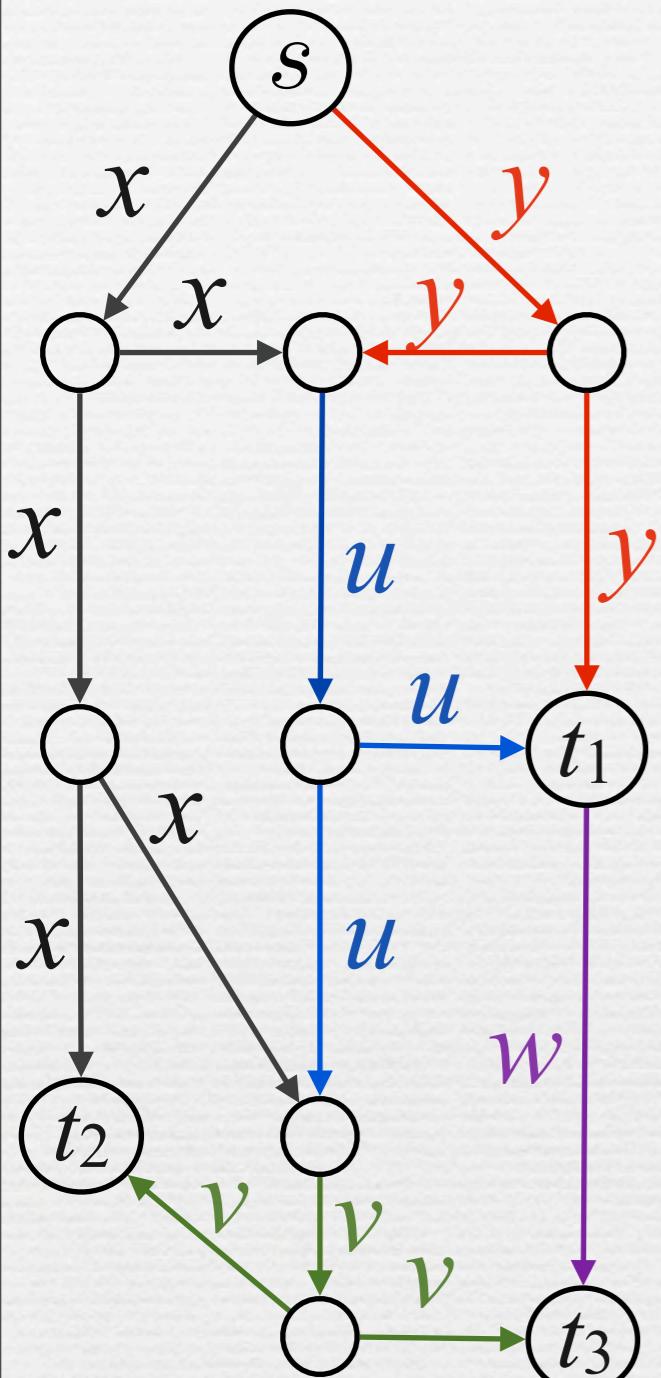
at t_1 :
$$\begin{pmatrix} u \\ y \end{pmatrix} = \begin{bmatrix} A_1 \\ \hline a & b \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_2 :
$$\begin{pmatrix} x \\ v \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ c + ad & bd \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_3 :
$$\begin{pmatrix} v \\ w \end{pmatrix} = \begin{bmatrix} c + ad & bd \\ ae & be + f \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

choose a, b, c, d, e and f such that the three matrices are invertible

example: $a=b=d=f=1$ and $c=e=0$



$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

at t_1 :
$$\begin{pmatrix} u \\ y \end{pmatrix} = \begin{bmatrix} A_1 \\ \hline a & b \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_2 :
$$\begin{pmatrix} x \\ v \end{pmatrix} = \begin{bmatrix} A_2 \\ \hline 1 & 0 \\ c + ad & bd \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_3 :
$$\begin{pmatrix} v \\ w \end{pmatrix} = \begin{bmatrix} A_3 \\ \hline c + ad & bd \\ ae & be + f \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

choose a, b, c, d, e and f such that the three matrices are invertible

example: $a=b=d=f=1$ and $c=e=0$

(this gives a solution over any alphabet $\text{GF}(q)$)