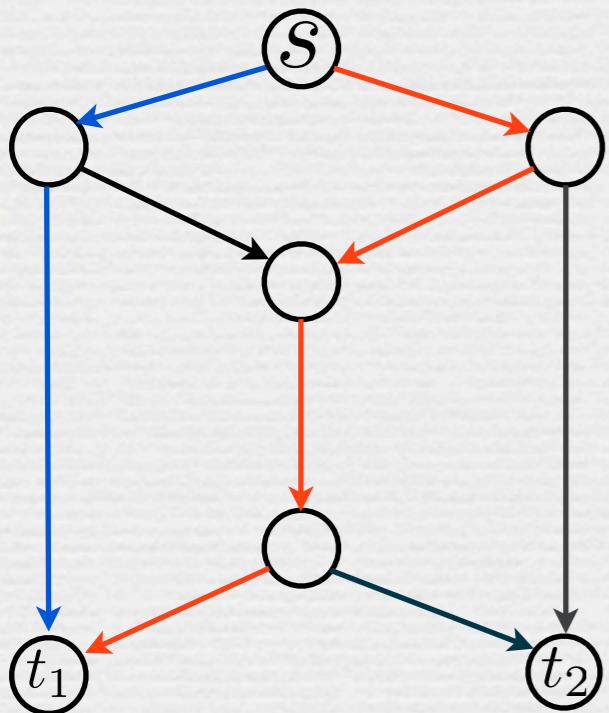
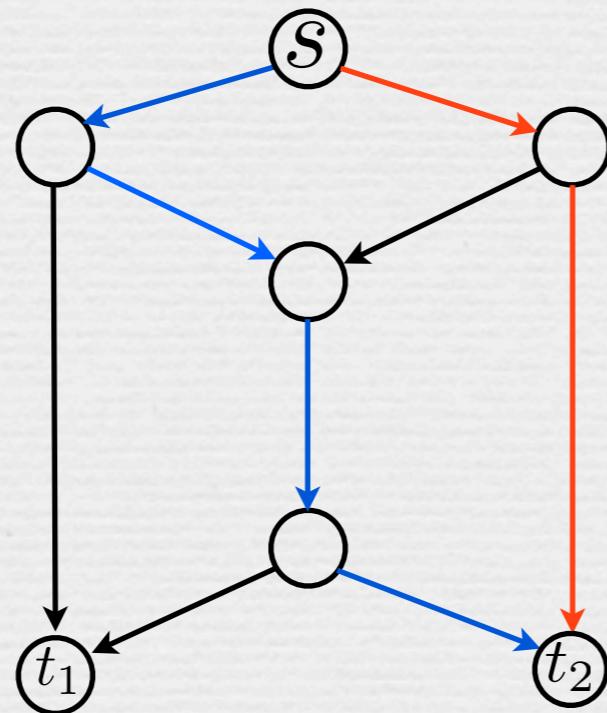
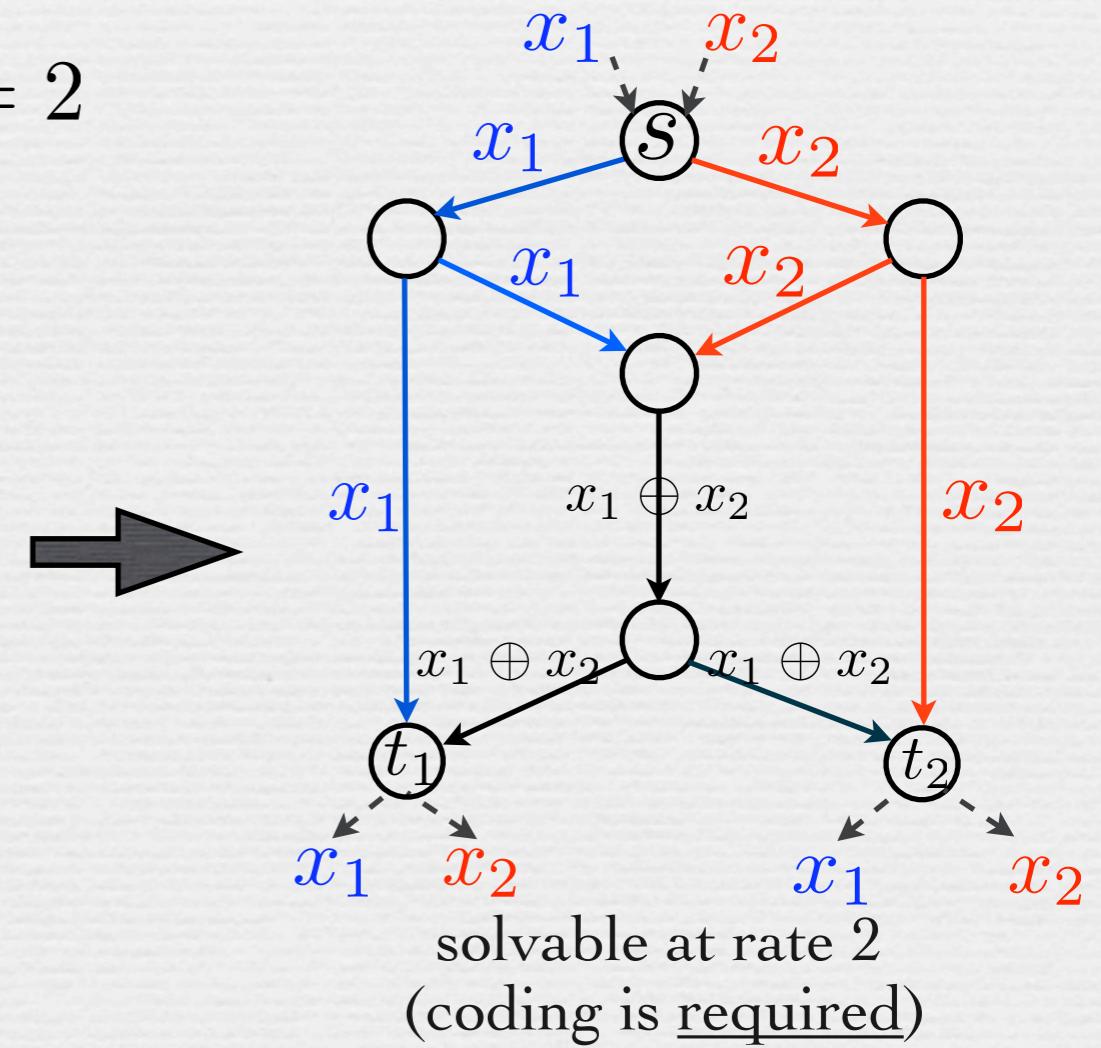
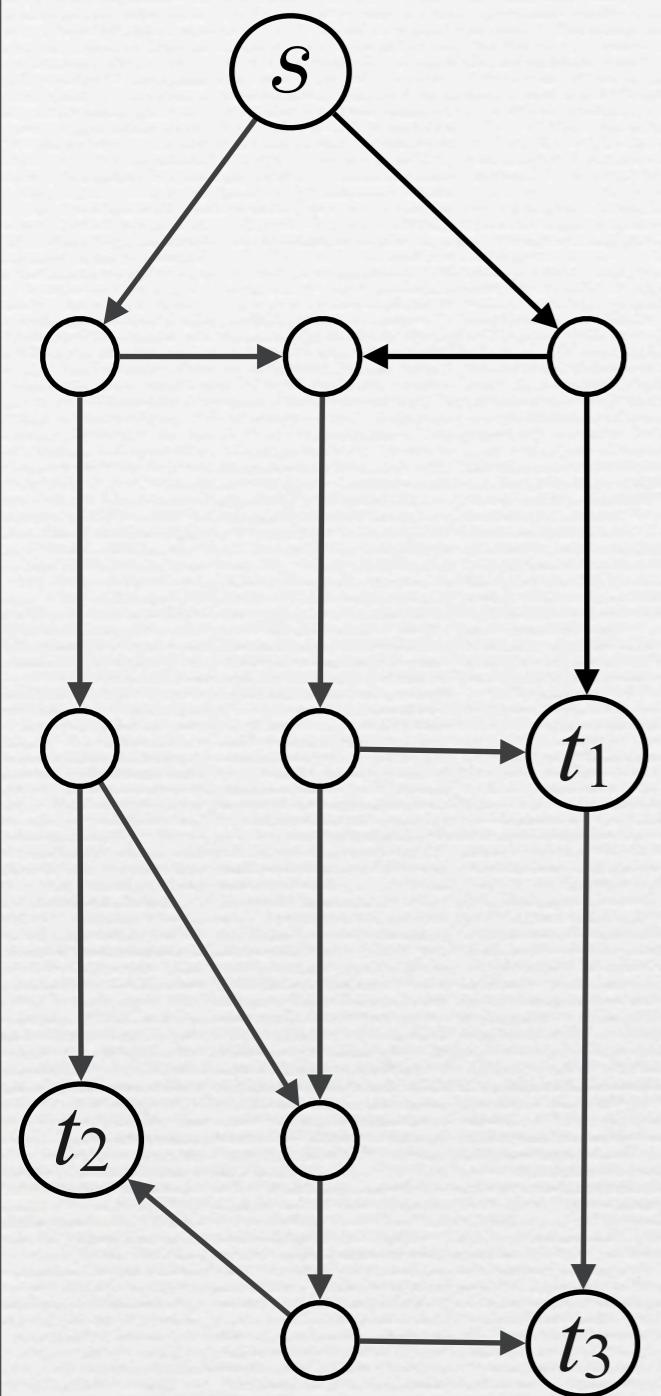


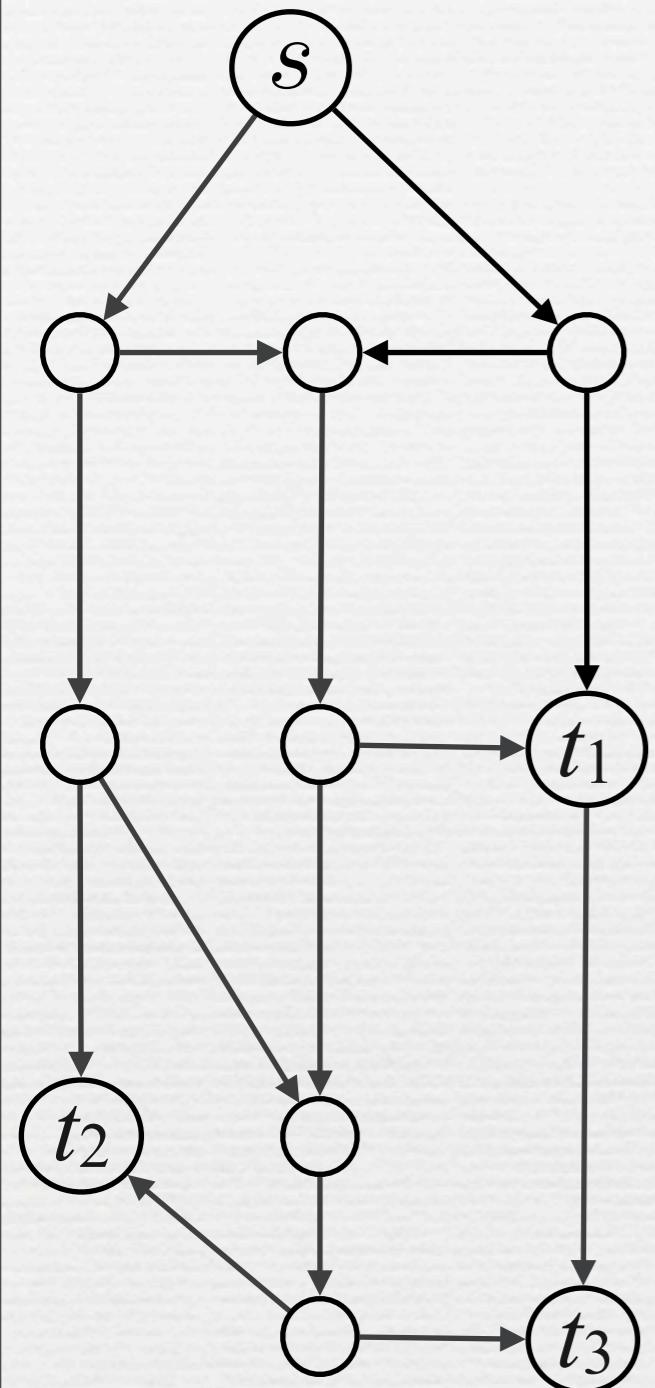
The Main Theorem of Network Coding

Example: condition \star holds for $r = 2$



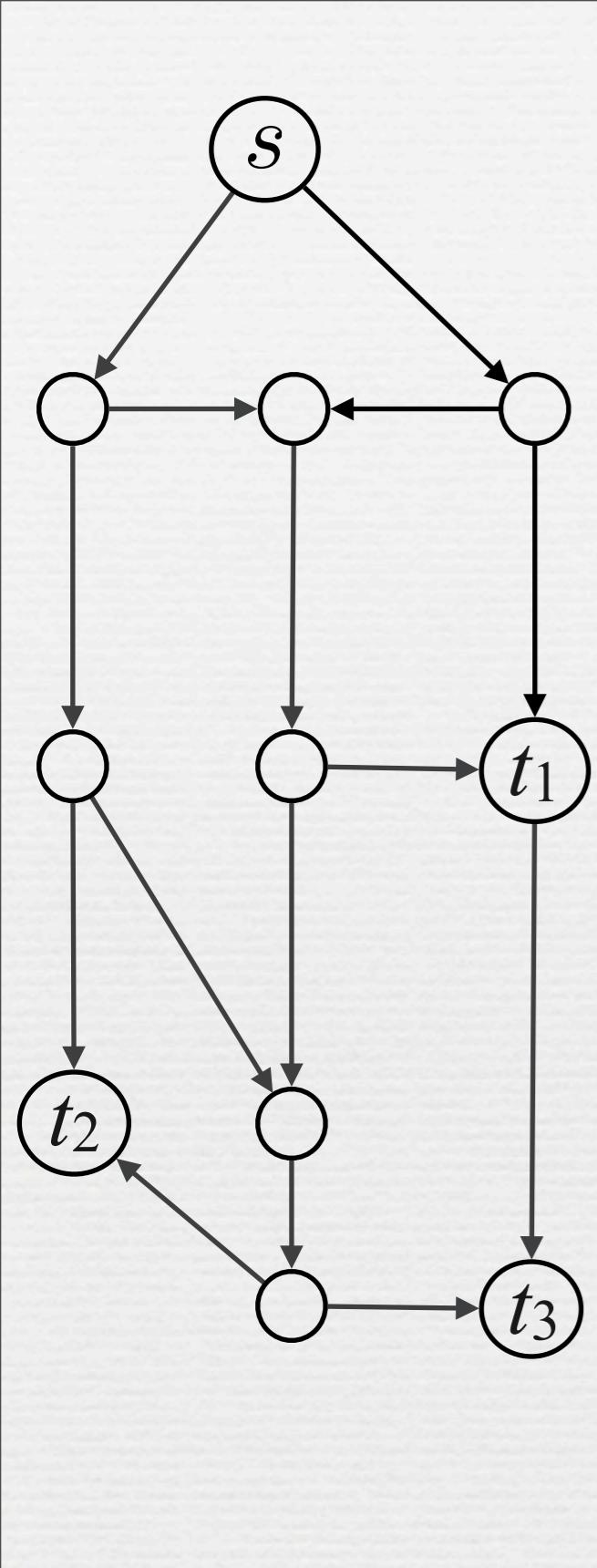
Overview of the Proof



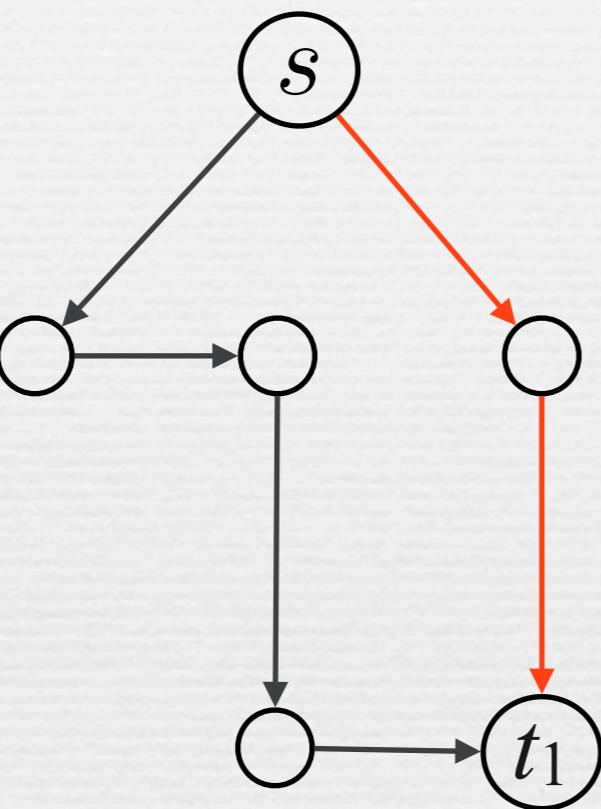


condition (\star) holds for $r = ?$

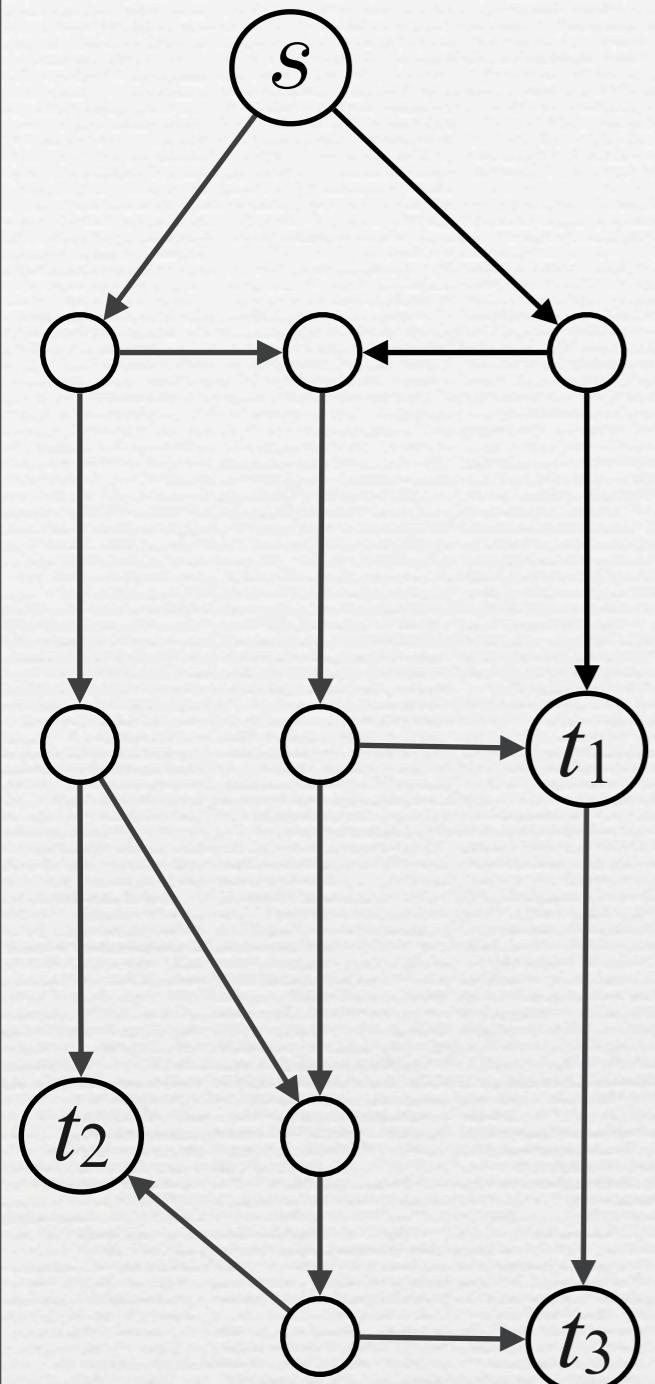
(\star) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .



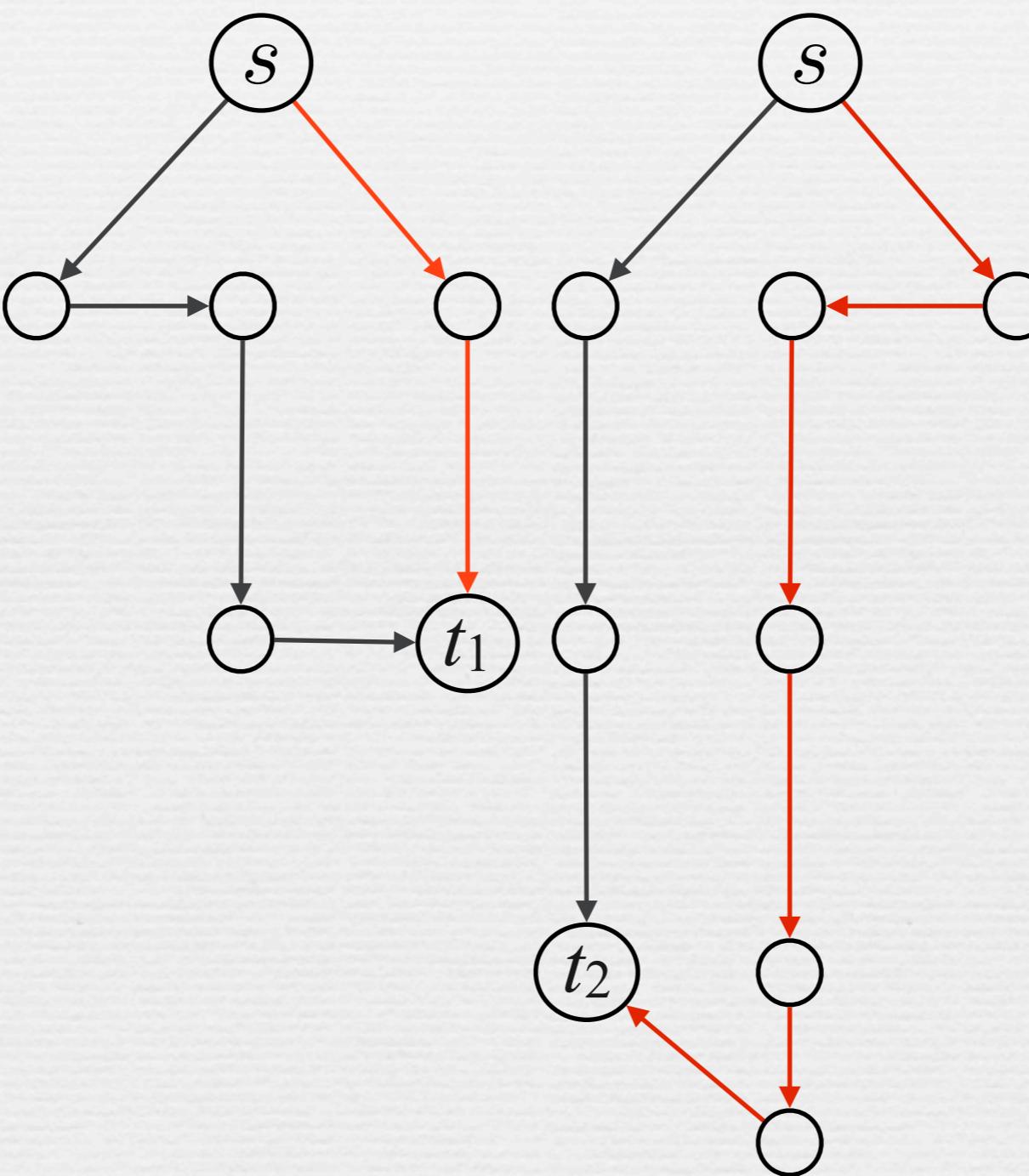
condition (\star) holds for $r = ?$

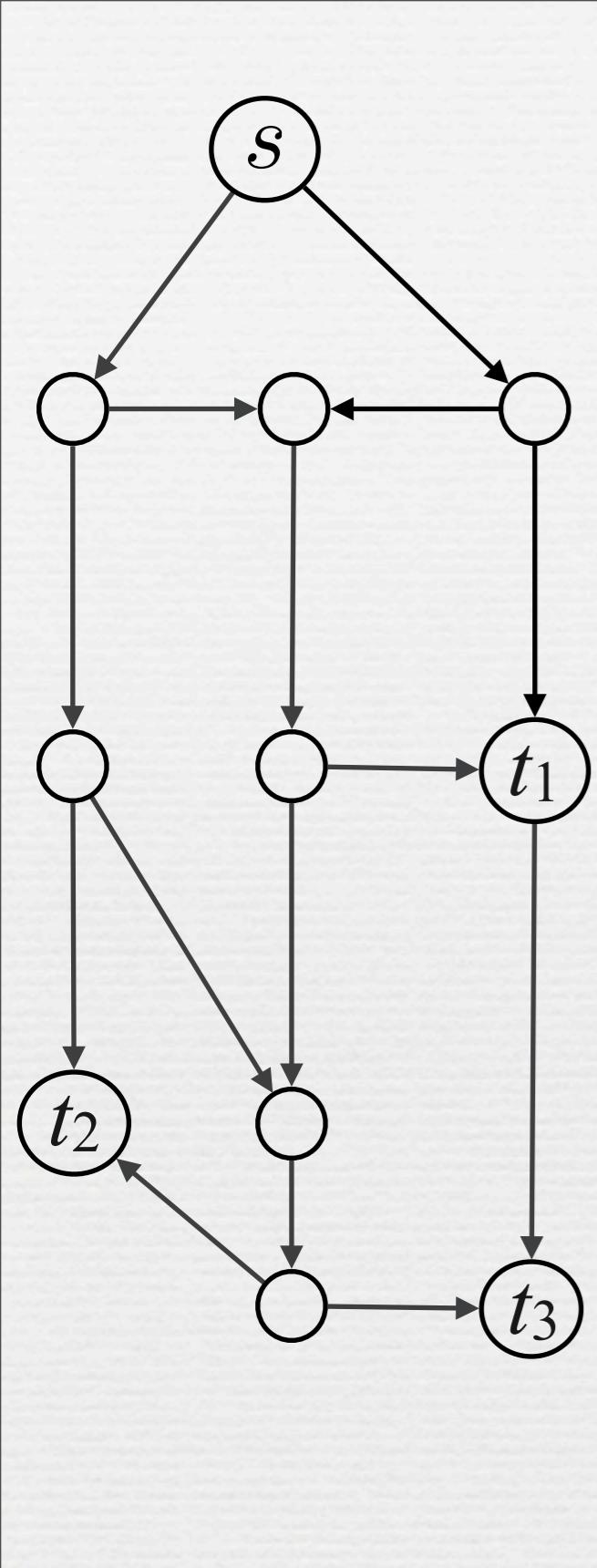


(\star) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .

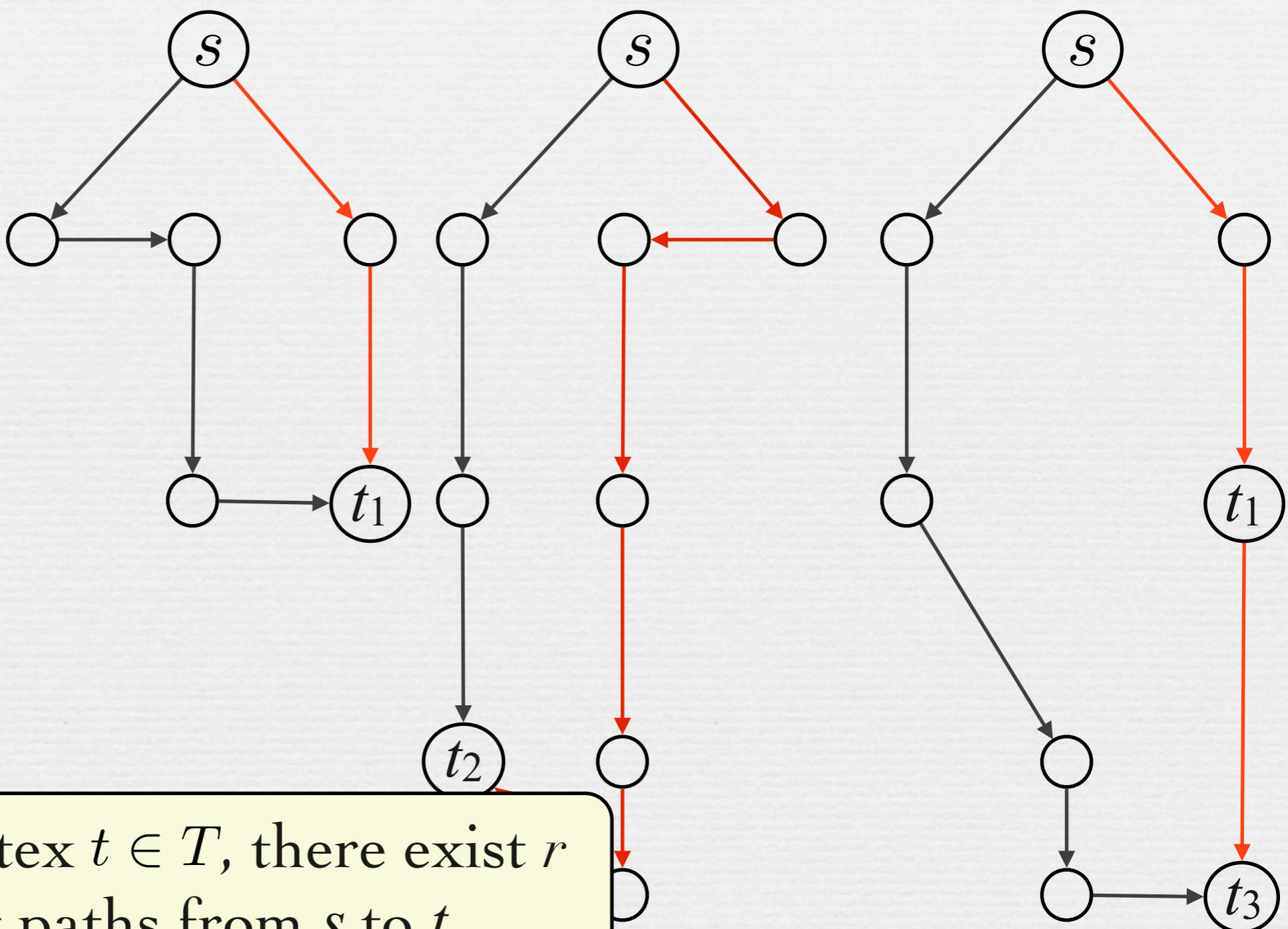


condition (\star) holds for $r = ?$

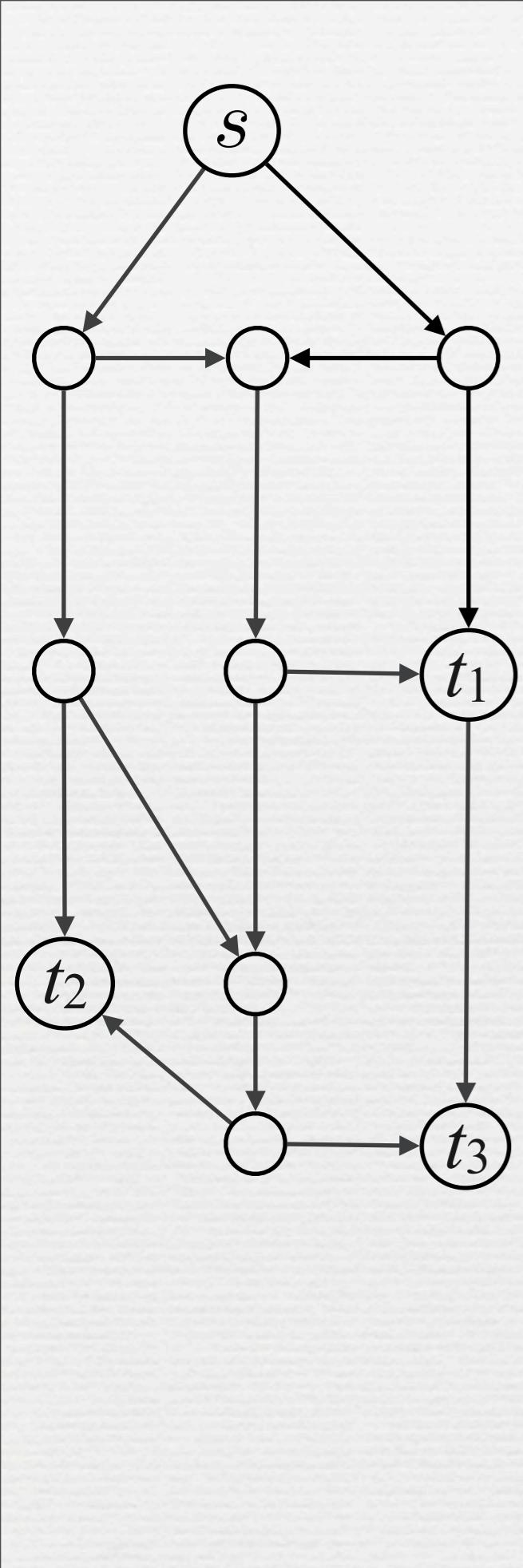




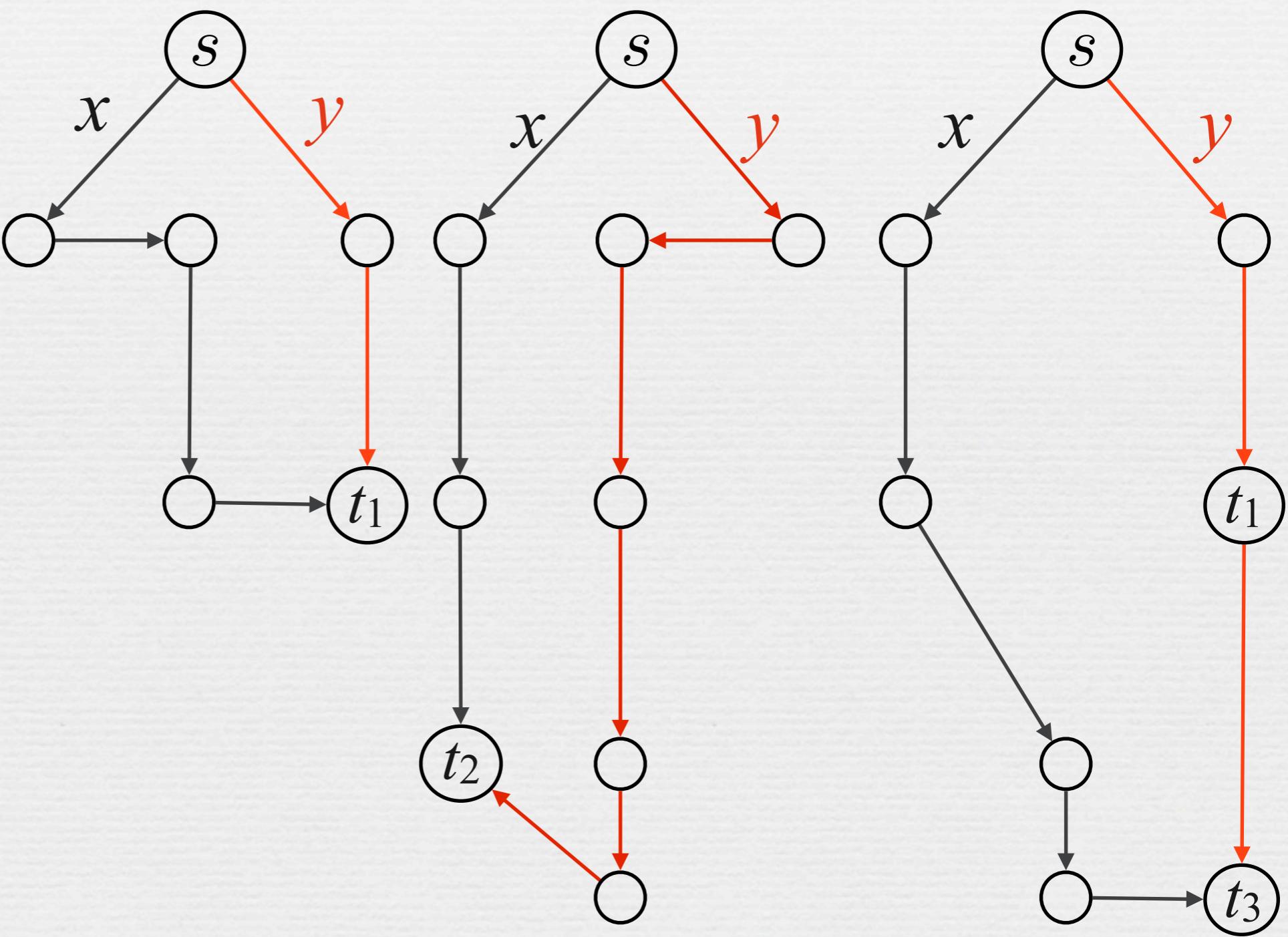
condition (\star) holds for $r = 2$

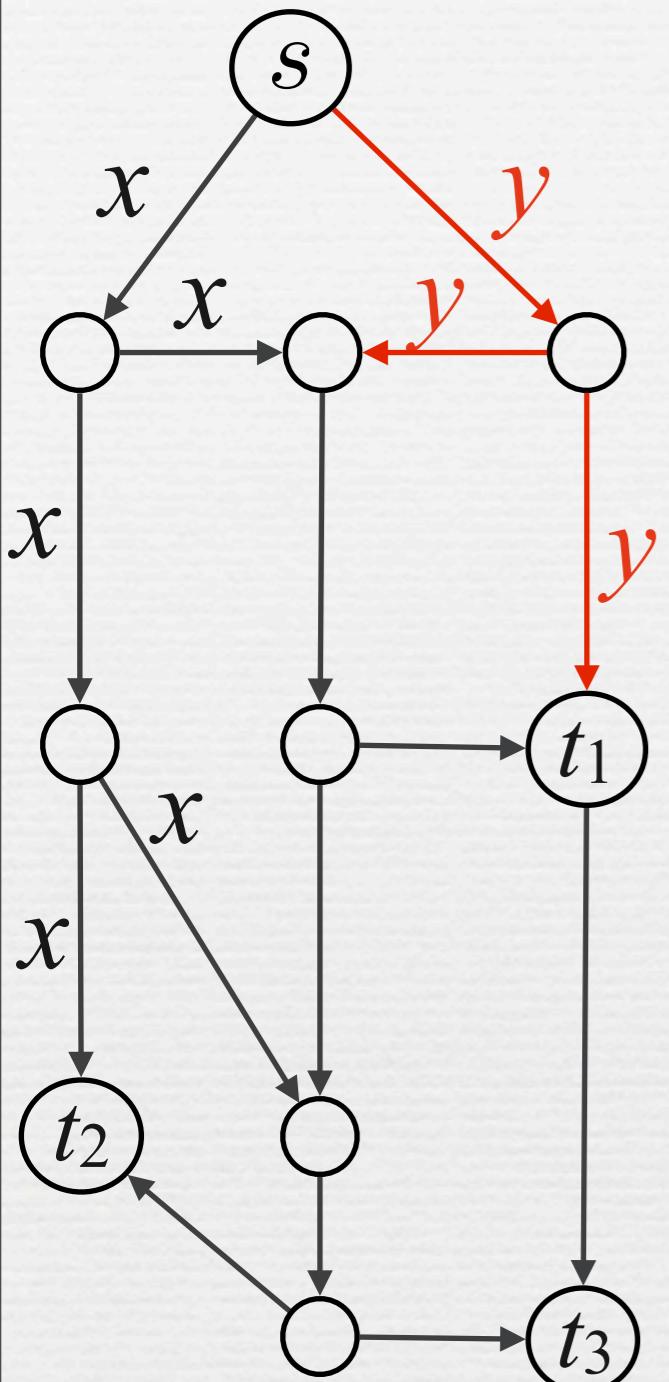


(\star) for each vertex $t \in T$, there exist r edge-disjoint paths from s to t .

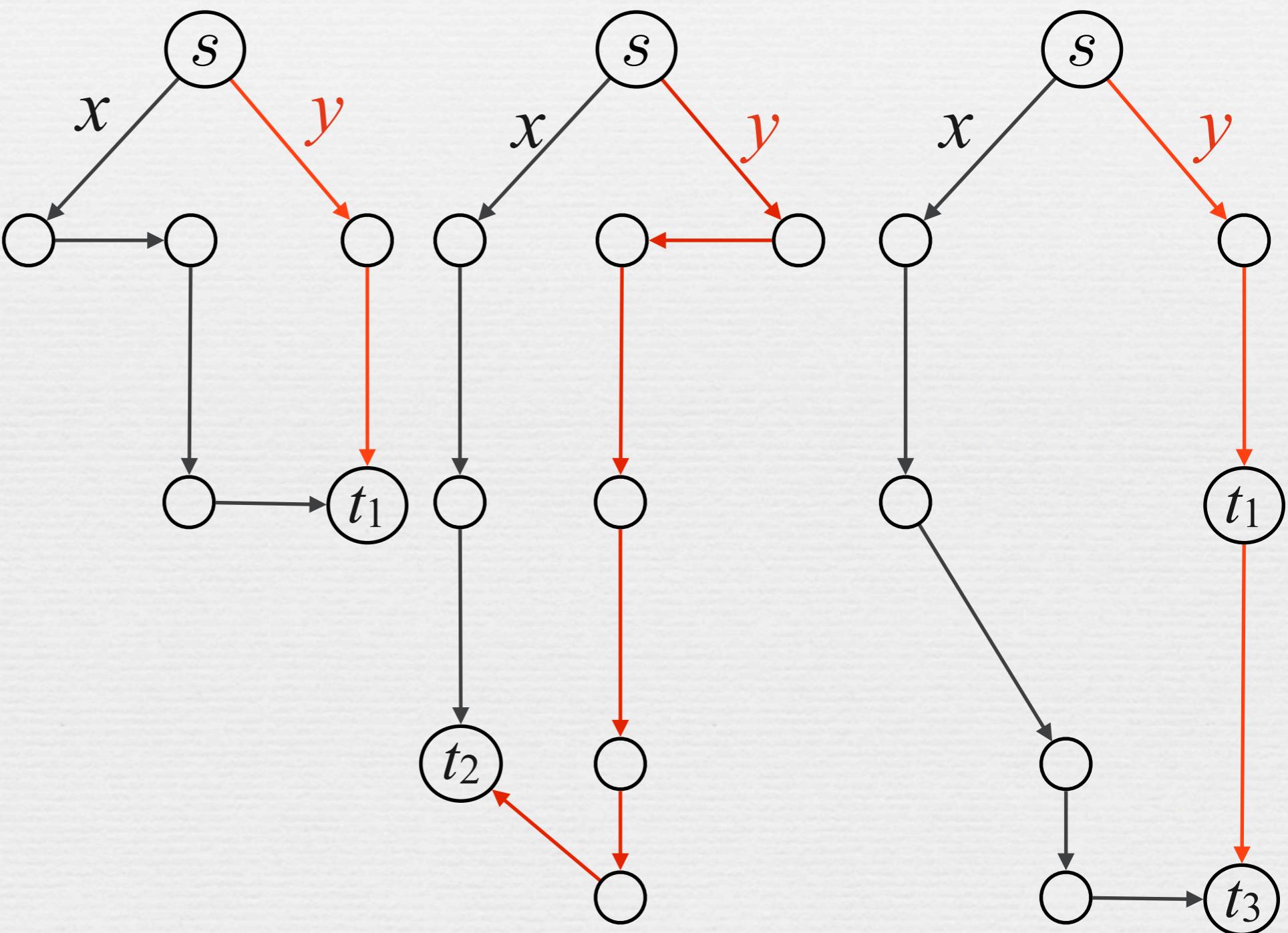


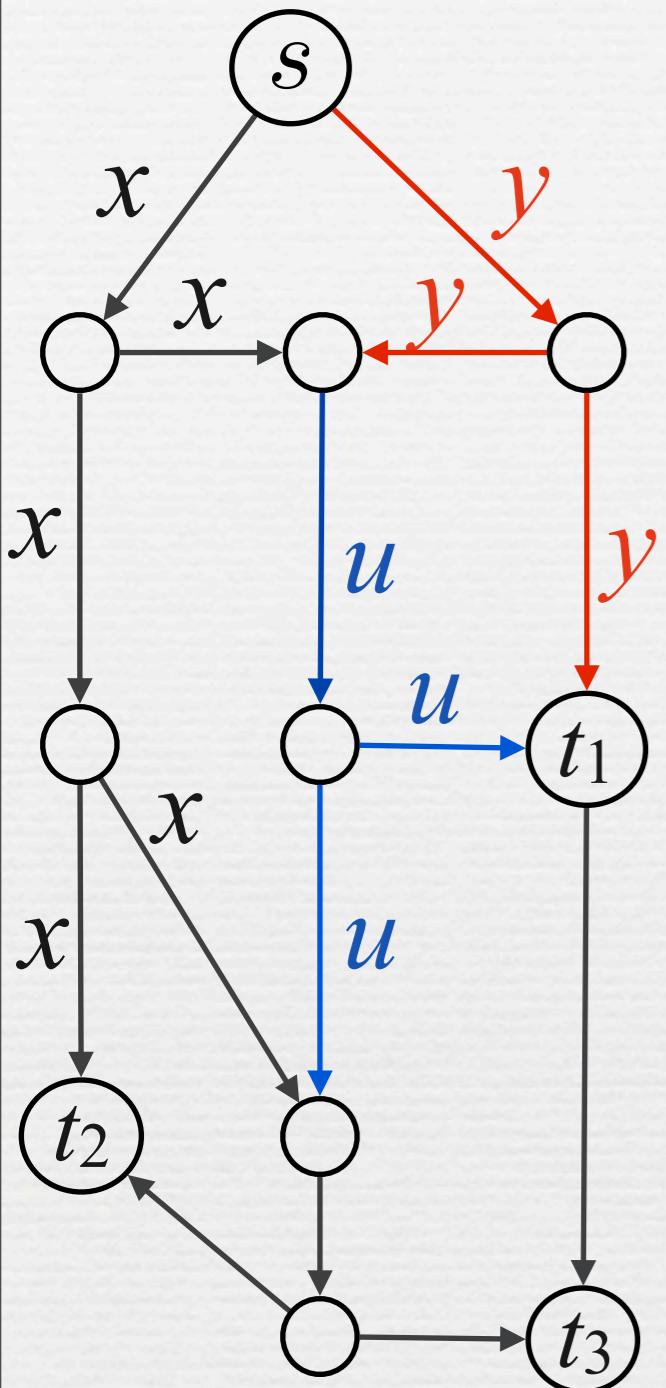
condition (\star) holds for $r = 2$





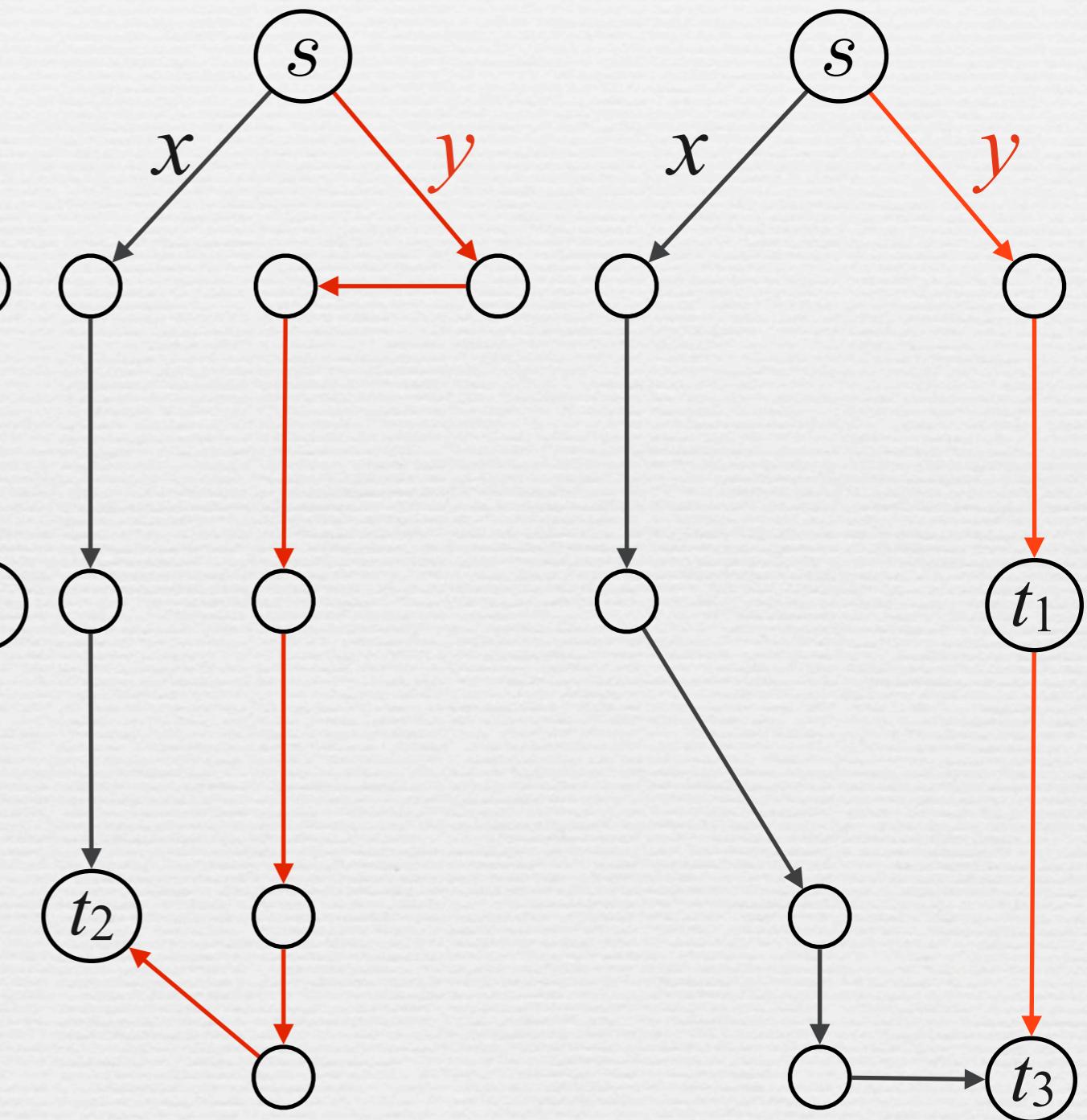
condition (\star) holds for $r = 2$

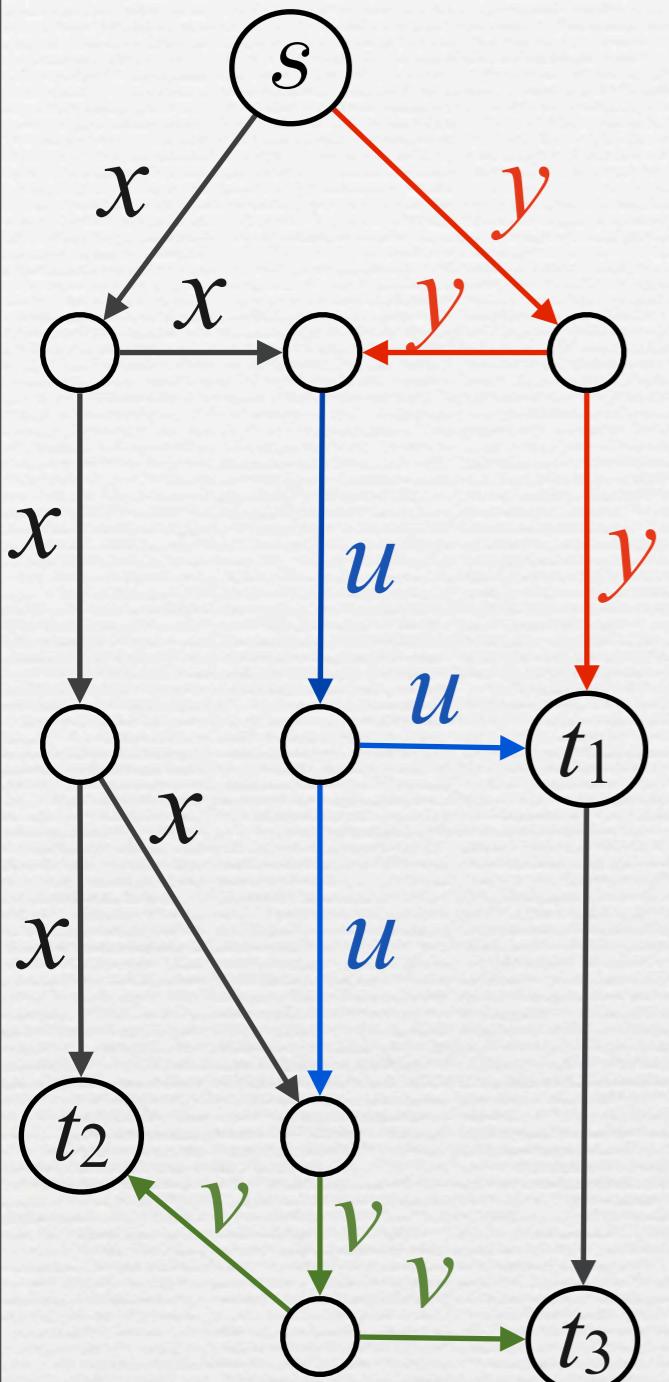




$$u = ax + by$$

condition (\star) holds for $r = 2$

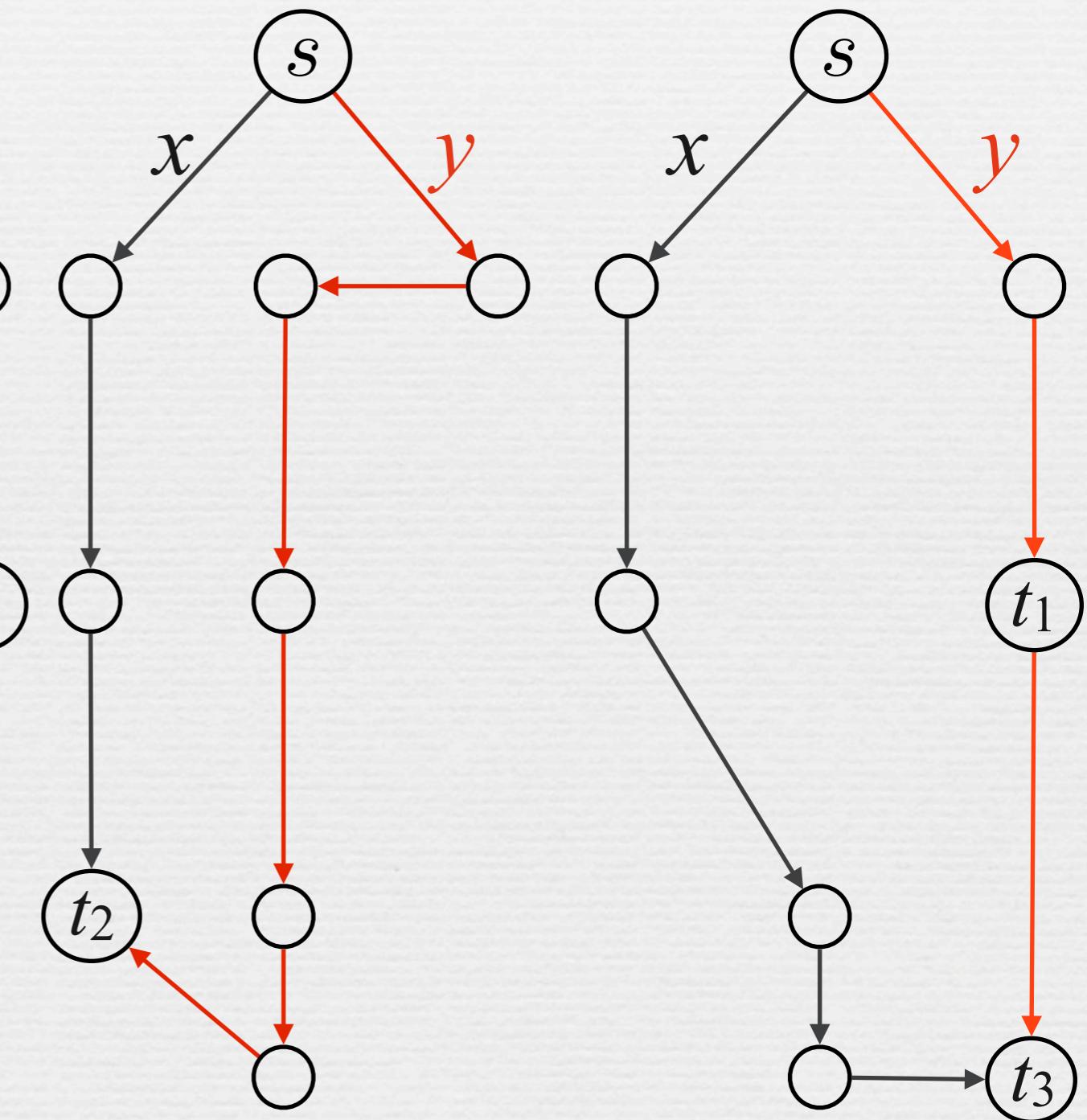


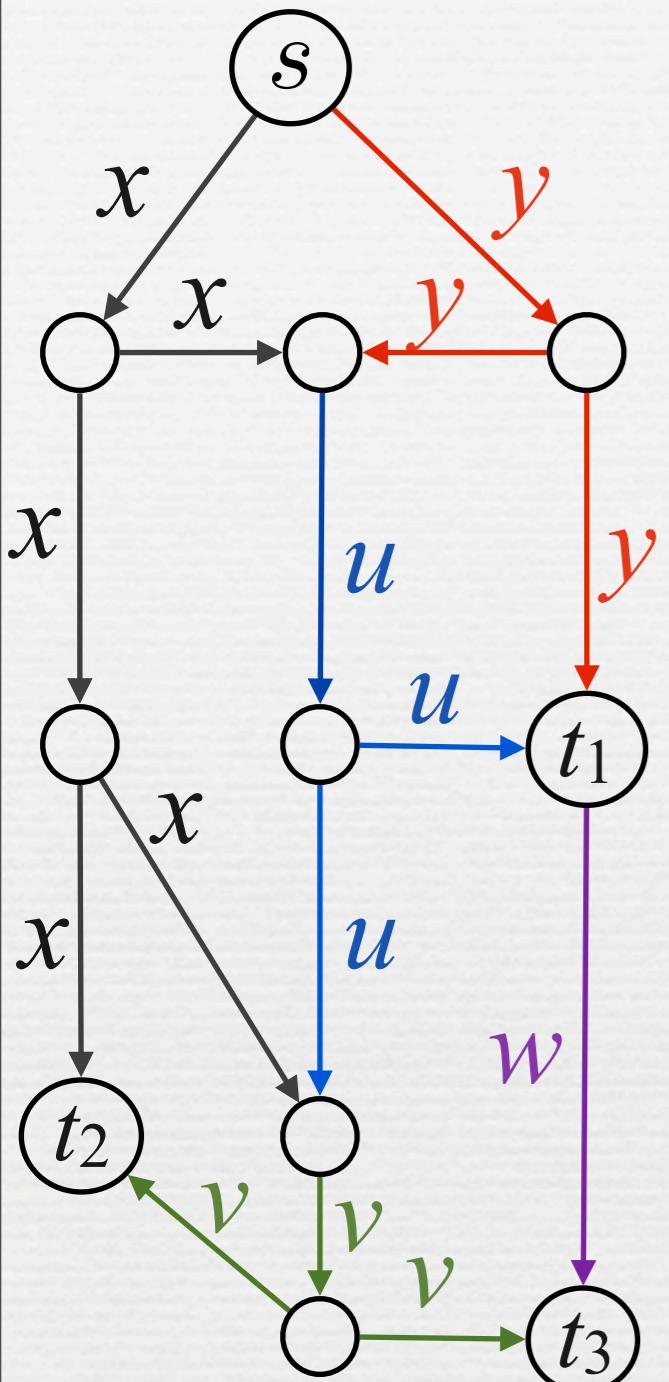


$$u = ax + by$$

$$v = cx + du$$

condition (\star) holds for $r = 2$



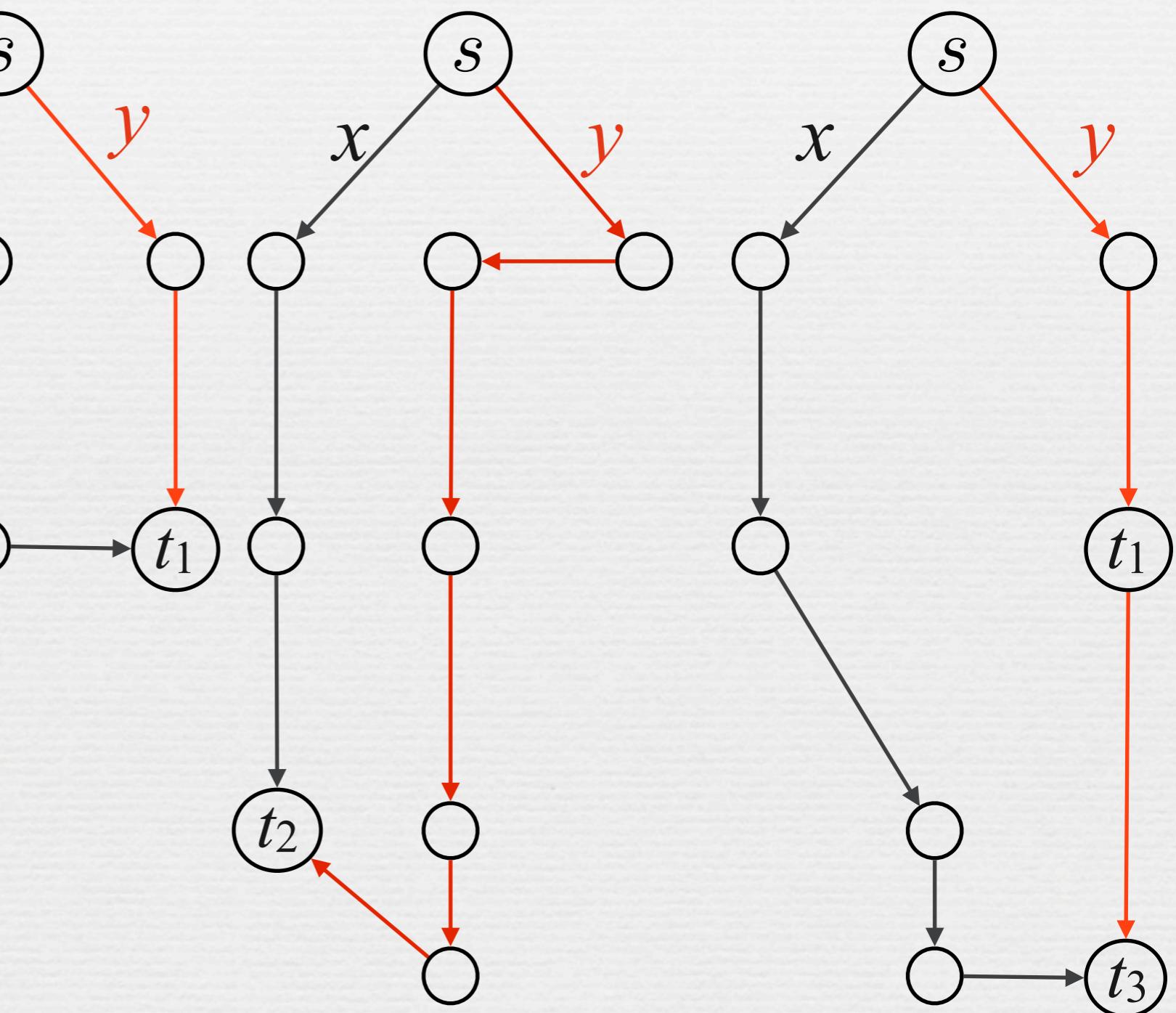


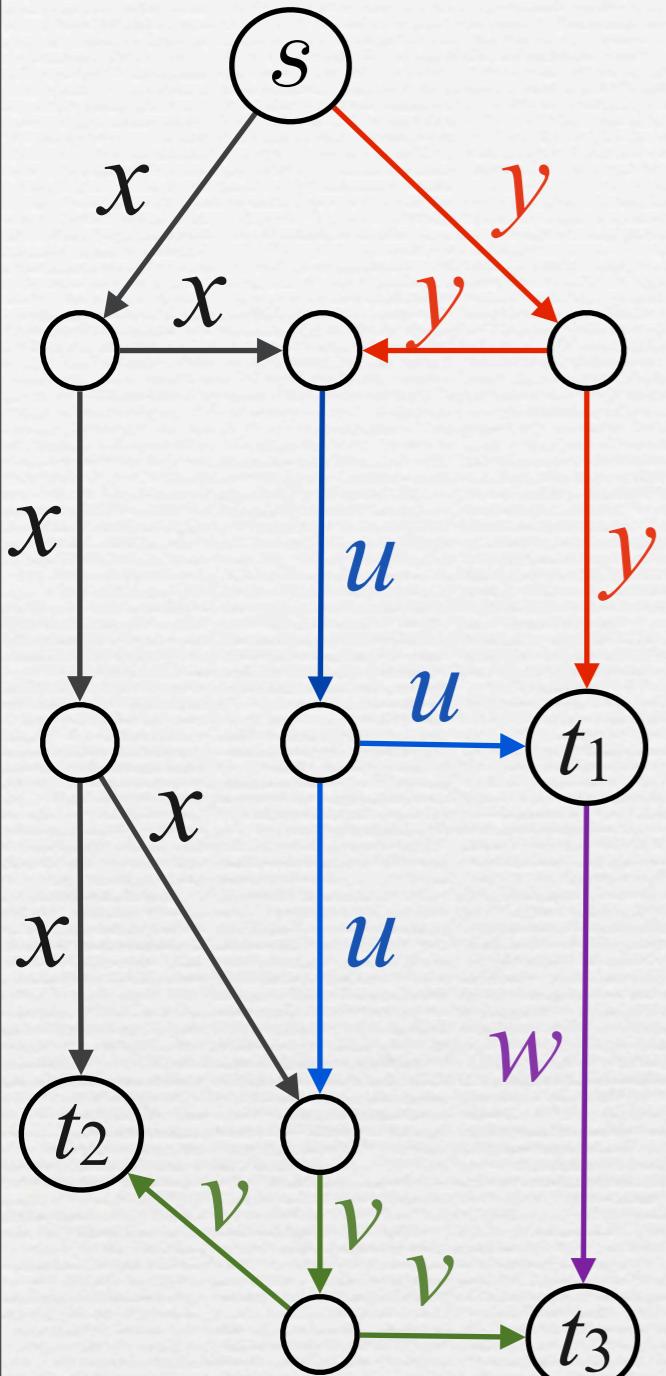
$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

condition (\star) holds for $r = 2$





$$u = ax + by$$

$$v = cx + du$$

$$w = eu + fy$$

at t_1 :

$$\begin{pmatrix} u \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_2 :

$$\begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ c + ad & bd \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

at t_3 :

$$\begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} c + ad & bd \\ ae & be + f \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

choose a, b, c, d, e and f such that the three matrices are invertible

example: $a=b=d=f=1$ and $c=e=0$